Gröbner Basis Cryptosystems

§ 1 Gröbner Bases in Free Associative Algebras

K (commutative) field
$\Sigma=\left\{x_{1}, \ldots, x_{n}\right\}$ finite alphabet
Σ^{*} set of terms (or words) over Σ
A term w is of the form $w=x_{i_{1}} x_{i_{2}} \cdots x_{i_{s}}$
$K\left[\Sigma^{*}\right]$ free associative K-algebra
$f \in K\left[\Sigma^{*}\right]$ is of the form $f=a_{1} w_{1}+\cdots+a_{r} w_{r}$ with $a_{i} \in K$ and $w_{i} \in \Sigma^{*}$

Definition. A term ordering on Σ^{*} is a well-ordering σ such that

1) $w_{1} \geq_{\sigma} w_{2} \quad \Rightarrow \quad w_{3} w_{1} w_{4} \geq_{\sigma} w_{3} w_{2} w_{4}$
2) $w_{1} w_{2} w_{3} \geq_{\sigma} w_{2}$

Examples. a) $\sigma=$ llex length-lexicographic ordering
b) $\sigma=$ tlex total lexicographic ordering

Definition. a) For $f=a_{1} w_{1}+\cdots+a_{r} w_{r} \in K\left[\Sigma^{*}\right] \backslash\{0\}$, the leading term of f is $\operatorname{LT}_{\sigma}(f)=\max _{\sigma}\left\{w_{i}\right\}$.
b) For a right-ideal $I \subseteq K\left[\Sigma^{*}\right]$, the leading term ideal of I is

$$
\operatorname{LT}_{\sigma}(I)=\left\langle\operatorname{LT}_{\sigma}(f) \mid f \in I \backslash\{0\}\right\rangle
$$

and the right leading term ideal of I is

$$
\operatorname{LT}_{\sigma}^{r}(I)=\left\langle\mathrm{LT}_{\sigma}(f) \mid f \in I \backslash\{0\}\right\rangle_{r}
$$

c) A subset $G \subseteq I$ is called a σ-Gröbner basis of I if $\operatorname{LT}_{\sigma}(I)=\left\langle\operatorname{LT}_{\sigma}(g) \mid g \in G\right\rangle$. It is called a right σ-Gröbner basis of I if $\operatorname{LT}_{\sigma}^{r}(I)=\left\langle\operatorname{LT}_{\sigma}(g) \mid g \in G\right\rangle_{r}$.

Questions: 1) Do Gröbner bases exist?
2) Can they be computed?
3) What are they good for?

Definition. Let $I \subseteq K\left[\Sigma^{*}\right]$ be a right ideal and $G \subseteq I$.
a) The rewrite rule \xrightarrow{G} defined by G is the reflexive, transitive closure of all \xrightarrow{g} with $g \in G$, where $f \xrightarrow{g} h$ means that there is a term $w \in \operatorname{Supp}(f)$ such that $w=\operatorname{LT}_{\sigma}(g) w^{\prime}$ and $h=f-c g w^{\prime}$ with $c \in K$ such that $w \notin \operatorname{Supp}(h)$.
b) The rewrite rule \xrightarrow{G} is called Noetherian if every chain $f_{1} \xrightarrow{g_{1}} f_{2} \xrightarrow{g_{2}} \cdots$ with $g_{1}, g_{2}, \ldots, \in G$ becomes eventually stationary.
c) The rewrite rule \xrightarrow{G} is called confluent if $f_{1} \xrightarrow{G} f_{2}$ and $f_{1} \xrightarrow{G} f_{3}$ implies that there exists f_{4} such that $f_{2} \xrightarrow{G} f_{4}$ and $f_{3} \xrightarrow{G} f_{4}$.

Proposition 1.1. Let $I \subseteq K\left[\Sigma^{*}\right]$ be a right ideal and $G \subseteq I$.
a) The rewrite rule \xrightarrow{G} is Noetherian.
b) G is a right σ-Gröbner basis of I iff \xrightarrow{G} is confluent.
c) If \xrightarrow{G} is confluent, every element $f \in K\left[\Sigma^{*}\right]$ has a unique normal form $\mathrm{NF}_{\sigma, I}(f)$ such that $f \xrightarrow{G} \mathrm{NF}_{\sigma, I}(f)$ and such that $\mathrm{NF}_{\sigma, I}(f)$ cannot be reduced further.

Definition. Given $f_{1}, f_{2} \in K\left[\Sigma^{*}\right]$ and $w_{1}, w_{2} \in \Sigma^{*}$ such that

1) $\operatorname{LT}_{\sigma}\left(f_{1}\right) w_{1}=w_{2} \operatorname{LT}_{\sigma}\left(f_{2}\right)$,
2) w_{1} is not a multiple of $\operatorname{LT}_{\sigma}\left(f_{2}\right)$ and w_{2} is not a multiple of $\operatorname{LT}_{\sigma}\left(f_{1}\right)$,
we call $S\left(f_{1}, f_{2}, w_{1}, w_{2}\right)=\frac{1}{\operatorname{LC}_{\sigma}\left(f_{1}\right)} f_{1} w_{1}-\frac{1}{\operatorname{LC}_{\sigma}\left(f_{2}\right)} w_{2} f_{2}$ the S-polynomial of f_{1} and f_{2}.

Theorem 1.2. (Buchberger Criterion)

Let $I \subseteq K\left[\Sigma^{*}\right]$ be a two-sided ideal and $G \subseteq I$ an LTreduced subset. Then G is a σ-Gröbner basis of I if and only if $S\left(g_{1}, g_{2}, w_{1}, w_{2}\right) \xrightarrow{G} 0$ for all S-polynomials of elements $g_{1}, g_{2} \in G$.

Theorem 1.3. (Buchberger's Algorithm)

Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be a two-sided ideal in $K\left[\Sigma^{*}\right]$. Consider the following instructions.

1) Start with $G=\left\{g_{1}, \ldots, g_{s}\right\}$, where $g_{i}=f_{i}$, and let B be the set of all S-polynomials involving elements of G.
2) If $B=\emptyset$, return G and stop. Otherwise, choose $S=$ $S\left(g_{i}, g_{j}, w_{i}, w_{j}\right) \in B$ and remove it from B.
3) Compute $S^{\prime}=\mathrm{NR}_{\sigma, G}(S)$. If $S^{\prime}=0$, continue with step 2).
4) Append S^{\prime} to G and all S-polynomials involving S^{\prime} and previous elements of G to B. Continue with step 2).

This is a procedure such that $G=\left\{g_{1}, g_{2}, \ldots\right\}$ is a σ-Gröbner basis of I. If the procedure stops, the resulting set G is a finite σ-Gröbner basis of I.

Remarks. a) A finite σ-Gröbner basis of I need not exist.
b) If I has a finite Gröbner basis, we can effectively compute in the residue class ring $K[\Sigma] / I$.
c) If I is a finitely generated right ideal, it has a finite right σ Gröbner basis which can be computed in finitely many steps.

§ 2. Gröbner Bases for Monoid Rings

M finitely presented monoid, i.e. $M=\Sigma^{*} / \sim_{R}$, where Σ^{*} is the monoid of all terms in the alphabet Σ
\sim_{R} is the congruence relation on Σ^{*} generated by finitely many relations $w_{1} \sim w_{1}^{\prime}, \ldots, w_{r} \sim w_{r}^{\prime}$.
$I_{M}=\left\langle w_{1}-w_{1}^{\prime}, \ldots, w_{r}-w_{r}^{\prime}\right\rangle \subseteq K\left[\Sigma^{*}\right]$
$K[M]=K\left[\Sigma^{*}\right] / I_{M}$ monoid ring
We assume that I_{M} has a finite Gröbner basis, i.e. that we can effectively compute in $K[M]$.

Many computational problems for monoids and groups can be treated using Gröbner bases.

Proposition 2.1. (The Word Problem for Monoids)

For $w_{1}, w_{2} \in \Sigma^{*}$, the following conditions are equivalent:

1) $\bar{w}_{1}=\bar{w}_{2}$ in M
2) $w_{1}-w_{2} \in I_{M} \quad$ ("ideal membership")

Proposition 2.2. (The Generalized Word Problem for Monoids)

Let $S \subseteq M$, and let $\langle S\rangle$ be the submonoid of M generated by S. For $w \in \Sigma^{*}$, the following conditions are equivalent:

1) $\bar{w} \in\langle S\rangle$
2) $\bar{w}-1 \in K[s-1 \mid s \in S] \subseteq K[M]$ ("subalgebra membership")

Prop. 2.3. (Generalized Word Problem for Groups)

Let M be a group, $S \subseteq M$ a finite subset, and $U=\langle S\rangle$ the subgroup of M generated by S. For $\bar{w} \in K[M]$, the following conditions are equivalent:

1) $\bar{w} \in U$
2) $\bar{w}-1 \in\langle s-1 \mid s \in S\rangle_{r} \subseteq K[M]$ ("right ideal membership")

Definition. Let $\bar{f}_{1}, \ldots, \bar{f}_{s} \in K[M]$.
a) The right $K[M]$-submodule $\operatorname{Syz}_{K[M]}^{r}\left(\bar{f}_{1}, \ldots, \bar{f}_{s}\right)=$ $\left\{\left(\bar{g}_{1}, \ldots, \bar{g}_{s}\right) \in K[M]^{s} \mid \bar{f}_{1} \bar{g}_{1}+\cdots+\bar{f}_{s} \bar{g}_{s}=0\right\}$ of $K[M]^{s}$ is called the right syzygy module of $\left(\bar{f}_{1}, \ldots, \bar{f}_{s}\right)$.
b) The right $K[M]$-module $\operatorname{Syz}_{K[M]}\left(\bar{f}_{1}, \ldots, \bar{f}_{s}\right)=$ $\left\{\left(\bar{g}_{1}, \ldots, \bar{g}_{s}, \bar{h}_{1}, \ldots, \bar{h}_{s}\right) \in\left(K[M]^{\mathrm{op}}\right)^{s} \oplus K[M]^{s} \mid \bar{g}_{1} \bar{f}_{1} \bar{h}_{1}+\cdots+\right.$ $\left.\bar{g}_{s} \bar{f}_{s} \bar{h}_{s}=0\right\}$ is called the (two-sided) syzygy module of $\left(\bar{f}_{1}, \ldots, \bar{f}_{s}\right)$.

Prop. 2.4. (The Conjugation and the Conjugator

 Search Problem for Groups)Let M be a group. For $\bar{w}_{1}, \bar{w}_{2} \in M$, the following conditions are equivalent:

1) $\bar{w}_{1}=\bar{w}_{3} \bar{w}_{2} \bar{w}_{3}^{-1}$ for some $\bar{w}_{3} \in M$
2) $\mathrm{Syz}_{K[M]}\left(\bar{w}_{1}, \bar{w}_{2}\right) \cap\{(e,-\bar{w}, \bar{w}, e) \mid \bar{w} \in M\} \neq \emptyset$

Proof: $\bar{w}_{1}=\bar{w}_{3} \bar{w}_{2} \bar{w}_{3}^{-1} \Longleftrightarrow e \cdot \bar{w}_{1} \cdot \bar{w}_{3}-\bar{w}_{3} \cdot \bar{w}_{2} \cdot e=0$

§ 3. Gröbner Bases for Right Modules

$F=\bigoplus_{\lambda \in \Lambda} K\left[\Sigma^{*}\right]$ free $K\left[\Sigma^{*}\right]$-module
$\left\{e_{\lambda} \mid \lambda \in \Lambda\right\}$ canonical basis of F
$U \subseteq F$ right submodule

Definition. a) A term in F is an element of the form $e_{\lambda} w$ with $\lambda \in \Lambda$ and $w \in \Sigma^{*}$.
b) A module term ordering τ is a well-ordering on the set of terms in F such that

1) $e_{\lambda} w_{1} \leq_{\tau} e_{\mu} w_{2} \quad \Rightarrow \quad e_{\lambda} w_{3} w_{1} w_{4} \leq_{\tau} e_{\mu} w_{3} w_{2} w_{4}$
2) $e_{\lambda} \leq_{\tau} e_{\lambda} w$ for all $w \in \Sigma^{*}$
c) For $v=\sum_{\lambda \in \Lambda} e_{\lambda} w_{\lambda} \neq$, the leading term of v is $\operatorname{LT}_{\tau}(v)=$ $\max _{\tau}\left\{v_{\lambda} \mid v_{\lambda} \neq 0\right\}$
d) The leading term module of U is the right submodule $\operatorname{LT}_{\tau}(U)=\left\langle\operatorname{LT}_{\tau}(v) \mid v \in U \backslash\{0\}\right\rangle_{r}$ of F.
e) $G \subseteq U$ is called a right τ-Gröbner basis of U if $\operatorname{LT}_{\tau}(U)=$ $\left\langle\operatorname{LT}_{\tau}(g) \mid g \in G\right\rangle_{r}$.

Remarks. a) One can extend Buchberger's Algorithm to right modules. Instead of S-polynomials one has to consider \mathbf{S}-vectors $S\left(v_{1}, v_{2}, w_{1}, w_{2}\right)=\frac{1}{\mathrm{LC}_{\tau}\left(v_{1}\right)} v_{1}-\frac{1}{\mathrm{LC}_{\tau}\left(v_{2}\right)} v_{2} w$.
b) U has a finite right τ-Gröbner basis G. One can decide submodule membership and compute effectively in F / U.
c) Every $v \in F$ has a unique normal form $v^{\prime}=\mathrm{NF}_{\tau, U}(v)$ which can be computed using G.

Proposition 3.1. (Macaulay Basis Theorem)

The residue classes of the terms in

$$
\mathcal{O}_{\tau}(U)=\left\{e_{\lambda} w \mid \lambda \in \Lambda, w \in \Sigma^{*}\right\} \backslash \operatorname{LT}_{\tau}(U)
$$

form a K-basis of F / U.

§ 4. Gröbner Basis Cryptosystems

$M=\Sigma^{*} / \sim_{R}$ finitely presented monoid
$F=\bigoplus_{\lambda \in \Lambda} K\left[\Sigma^{*}\right]$ free $K\left[\Sigma^{*}\right]$-module
τ module term ordering
$\bar{F}=F / I_{M} F$ free $K[M]$-module
$U \subseteq F$ right submodule which represents a right submodule $\bar{U} \subseteq \bar{F}$, i.e. such that $I_{M} F \subseteq U$

Public: $F, \tau, \mathcal{O}_{\tau}(U)$, vectors $u_{1}, \ldots, u_{s} \in U$
Secret: G right τ-Gröbner basis of U
Encoding: A plaintext unit is a vector $v \in\left\langle\mathcal{O}_{\tau}(U)\right\rangle_{K}$, i.e. a linear combination $v=c_{1} e_{\lambda_{1}} w_{1}+\cdots+c_{r} e_{\lambda_{r}} w_{r}$ such that $c_{i} \in K, \lambda_{i} \in \Lambda$, and $w_{i} \in \Sigma^{*}$.

The corresponding ciphertext unit is $w=v+u_{1} f_{1}+\cdots+u_{s} f_{s}$ with "randomly" chosen $f_{1}, \ldots, f_{s} \in K\left[\Sigma^{*}\right]$.
[Variant: $w=\left(f_{0}, v f_{0}+u_{1} f_{1}+\cdots+u_{s} f_{s}\right)$]
Decoding: Using \xrightarrow{G}, compute $v=\mathrm{NF}_{\sigma, G}(w)$.
[Variant: $\mathrm{NF}_{\sigma, G}(w)=v f_{0}$ and $v=\left(v f_{0}\right) / f_{0}$.]

Remarks. a) If the attacker can compute G, he can break the cryptosystem.
b) The attacker knows u_{1}, \ldots, u_{s} and $\mathcal{O}_{\tau}(U)$, but not a system of generators of U. We can make his task difficult by choosing u_{1}, \ldots, u_{s} such that a Gröbner basis of $\left\langle u_{1}, \ldots, u_{s}\right\rangle_{r}$ is hard to compute.
c) The computation of Gröbner bases is EXTSPACE-hard. (I.e. the amount of memory it requires increases exponentially with the size of the input.)
d) The advantage of using modules (rather than ideals in $\left.K\left[\Sigma^{*}\right]\right)$ is that one can encode hard combinatorial or number theoretic problems in the action of the terms on the canoncial basis vectors (see examples below).
e) The free module F is not required to be finitely generated. Any concrete calculation will involve only finitely many components.

Example 1. $K=\mathbb{F}_{q}$ finite field
$M=\mathbb{N}^{n}=\Sigma^{*} / \sim_{R}$ where $R=\left\{x_{i} x_{j} \sim x_{j} x_{i}\right\}$
$F=K\left[\Sigma^{*}\right]$ non-commutative polynomial ring
$\tau=$ llex
$K[M]=K\left[x_{1}, \ldots, x_{n}\right]$ commutative polynomial ring
Public: $F, \tau, \mathcal{O}_{\tau}(U)=\{1\}, \bar{u}_{1}, \ldots, \bar{u}_{s} \in K[M]$ commutative polynomials such that $\bar{u}_{i}\left(a_{1}, \ldots, a_{n}\right)=0$

Secret: $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$, corresponding to the Gröbner basis $\left\{x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\}$ of the ideal $\bar{U}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ Encoding: A plaintext unit $c \in \mathbb{F}_{q}$ is encrypted as $w=$ $c+u_{1} f_{1}+\cdots+u_{s} f_{s}$ with "randomly chosen" polynomials $f_{1}, \ldots, f_{s} \in K[M]$.

Decoding: $c=w\left(a_{1}, \ldots, a_{n}\right)=\mathrm{NF}_{\tau, G}(w)$
This is Neil Koblitz' polly cracker cryptosystem. Its disadvantage is that the attacker knows that there is an element in $w+u_{1} \cdot K[M]+\cdots+u_{s} \cdot K[M]$ which has support $\{1\}$. Hence many coefficients have to vanish. This allows a linear algebra attack.

Example 2. $K=\mathbb{F}_{2}, \Sigma=\{x\}, M=\Sigma^{*}=\mathbb{N}$
$K[M]=K[x]$ polynomial ring in one indeterminate
$p \gg 0$ prime number
$F=\bigoplus_{i=1}^{p-1} K[x] \epsilon_{i} \oplus \bigoplus_{j=1}^{p-1} K[x] e_{j}$
g generator of \mathbb{F}_{q}^{*}
$\tau=$ PosDeg such that $\epsilon_{g^{p-1}}>_{\tau} \cdots>_{\tau} \epsilon_{g}>_{\tau} \epsilon_{1}>_{\tau}$
$>_{\tau} e_{1}>_{\tau} e_{g}>_{\tau} \cdots>_{\tau} e_{g^{p-1}}$
Public: $F, \tau, \mathcal{O}_{\tau}(U)=\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\}, b=g^{a}(\bmod p)$, $\left\{u_{1}, \ldots, u_{s}\right\}=\left\{\epsilon_{1}-e_{1}, x \epsilon_{i}-\epsilon_{g i}, x e_{j}-e_{b j} \mid i, j=1, \ldots, p-1\right\}$ where all indices are computed modulo p.

Secret: $a \in\{1, \ldots, p-1\}, G=\left\{u_{1}, \ldots, u_{s}\right\} \cup\left\{\epsilon_{i}-e_{i^{a}} \mid i=\right.$ $1, \ldots, p-1\} \tau$-Gröbner basis of $U=\langle G\rangle$

Encryption: A plaintext unit is of the form $e_{1}+e_{c}$ with $c \in\{0, \ldots, p-1\}$. Using the variant, we randomly choose $k \in\{0, \ldots, p-1\}$ and form $x^{k}\left(e_{1}+e_{c}\right)$. By adding suitable elements u_{i} we compute $x^{k}\left(e_{1}+e_{c}\right)=x^{k} \epsilon_{1}+x^{k} e_{c}=\epsilon_{g^{k}}+e_{c b^{k}}$ in $F /\left\langle u_{1}, \ldots, u_{s}\right\rangle$. The ciphertext unit is $w=\epsilon_{g^{k}}+e_{c b^{k}}$.
Decryption: $\mathrm{NF}_{\tau, U}(w)=\mathrm{NF}\left(e_{b^{k}}+e_{c b^{k}}\right)=\mathrm{NF}\left(x^{k}\left(e_{1}+e_{c}\right)\right)$. In order to divide this vector by x^{k}, it suffices to compute $c=\left(c b^{k}\right) /\left(b^{k}\right)$ in \mathbb{F}_{p} and to form $e_{1}+e_{c}$.

This is the Gröbner basis version of the ElGamal cryptosystem. It can be broken if the attacker is able to compute the discrete logarithm a of $b=g^{a}$ or k of g^{k}.

In the Gröbner basis version, the attacker has to reduce using $\epsilon_{g^{k}} \xrightarrow{u_{i}} \cdots \xrightarrow{u_{j}} x^{k} \epsilon_{1} \xrightarrow{u_{1}} x^{k} e_{1}$ which takes $k \gg 0$ reduction steps. If one knows a, one can get rid of the ϵ_{i} by using just one reduction step $\epsilon_{g^{k}} \longrightarrow \epsilon_{g^{k a}}$.

Example 3. Let $K=\mathbb{F}_{2}, \Sigma=\{x, y\}, M=\mathbb{N}^{2}$
$K[M]=K\left[\Sigma^{*}\right] /\langle x y-y x\rangle=K[x, y]$ polynomial ring
$p, q \gg 0$ prime numbers, $n=p q$
$\bar{F}=\bigoplus_{i \in(\mathbb{Z} / n \mathbb{Z})^{*}} K[x, y] \epsilon_{i}, \quad \tau=$ DegLexPos
Public: $F($ and thus $n), \tau, \mathcal{O}_{\tau}(U)=\left\{\epsilon_{i} \mid i \in(\mathbb{Z} / n \mathbb{Z})^{*}\right\}$, $e \in(\mathbb{Z} /(p-1)(q-1) \mathbb{Z})^{*},\left\{u_{1}, \ldots, u_{s}\right\}=\left\{x \epsilon_{i}-\epsilon_{i e}, x y \epsilon_{j}-\epsilon_{j} \mid\right.$ $\left.i, j \in(\mathbb{Z} / n \mathbb{Z})^{*}\right\}$

Secret: p, q, a number $d \in\{1, \ldots, n-1\}$ which satisfies $d e=1(\bmod p-1)$ and $d e=1(\bmod q-1)$, and the τ-Gröbner basis $G=\left\{u_{1}, \ldots, u_{s}\right\} \cup\left\{y \epsilon_{i}-\epsilon_{i^{d}} \mid i \in(\mathbb{Z} / n \mathbb{Z})^{*}\right\}$ of $U=\langle G\rangle$. Encryption: A plaintext unit is a vector $\epsilon_{c} \in \mathcal{O}_{\tau}(U)$. To encrypt it, we form $x y \epsilon_{c}$ and add elements of $\left\{u_{1}, \ldots, u_{s}\right\}$ to obtain the cyphertext unit $w=y \epsilon_{c^{e}}$.

Decryption: Compute $\mathrm{NF}_{\tau, U}\left(y \epsilon_{c^{e}}\right)=\mathrm{NF}_{\tau, U}\left(\epsilon_{c^{e d}}\right)=\epsilon_{c}$.

This is the Gröbner basis version of the RSA cryptosystem. If the attacker is able to factor n, he can break the code. It is easy to see that this is equivalent to being able to find d. In the Gröbner basis version, the problem the attacker faces is that he doesn't know the Gröbner basis elements $y \epsilon_{i}-\epsilon_{i^{d}}$ which are not even elements of the submodule $\left\langle u_{1}, \ldots, u_{s}\right\rangle$ that he knows.

Example 4: Let K be a field and $M=\Sigma^{*} / \sim_{R}$ a finitely presented group.
$K[M]=K\left[\Sigma^{*}\right] / I_{M}$
$\bar{F}=\bigoplus_{\bar{w} \in M} \epsilon_{\bar{w}} K[M] \oplus \bigoplus_{\bar{w} \in M} e_{\bar{w}} K[M]$ free right $K[M]$-module $\tau=$ llex such that $\epsilon_{\bar{w}}>_{\tau} e_{\bar{u}}$ for all $w, u \in \Sigma^{*}$

Public: $F, \tau, g, g^{\prime} \in M$ such that $g^{\prime}=a^{-1} g a, \mathcal{O}_{\tau}(U)=\left\{e_{\bar{w}} \mid\right.$ $\bar{w} \in M\}$, and $\left\{u_{\lambda} \mid \lambda \in \Lambda\right\}=\left\{\epsilon_{i} h-\epsilon_{h^{-1} i h}, \epsilon_{g}-e_{g^{\prime}}, e_{j} k-\right.$ $\left.e_{k^{-1} j k} \mid i, j, h, k \in M\right\}$

Secret: $a \in M$, or equivalently, the τ-Gröbner basis $G=$ $\left\{u_{\lambda} \mid \lambda \in \Lambda\right\} \cup\left\{\epsilon_{i}-e_{a^{-1} i a} \mid i \in M\right\}$ of $U=\langle G\rangle_{r} \subseteq F$

Encryption: A plaintext unit $m \in M$ is written in the form $\epsilon_{g}+e_{g^{\prime}} \tilde{m}$, where $\tilde{m}=b m b^{-1}$. Then we multiply by the "randomly" chosen element $b \in\{c \in M \mid c a=a c\}$ and use the elements u_{λ} to compute $w=\epsilon_{b^{-1} g b}+e_{b^{-1} g^{\prime} \tilde{m} b}$.

Decryption: Compute $\mathrm{NF}_{\tau, G}(w)=\mathrm{NF}_{\tau, G}\left(e_{a^{-1} g^{\prime \prime} a}+e_{b^{-1} g^{\prime} b m}\right)$ $=\mathrm{NF}_{\tau, G}\left(e_{b^{-1} g^{\prime} b}+e_{b^{-1} g^{\prime} b m}\right)$, where $g^{\prime \prime}=b^{-1} g b$. Then determine m from the relation $m=\left(b^{-1} g^{\prime} b m\right) /\left(b^{-1} g^{\prime} b\right)$.

This is Gröbner basis version of an ElGamal like cryptosystem based on a group with a "hard" conjugator search problem (e.g. braid groups). The attacker can break the code if he can determine a from g and $g^{\prime}=a^{-1} g a$. The advantage of knowing the Gröbner basis of that one can pass from $\epsilon_{g^{\prime \prime}}$ to the corresponding e_{i} without going through $\epsilon_{g}=e_{g^{\prime}}$. The computation of that Gröbner basis is equivalent to finding a.

§ 5. A Possible Generalization

- If one wants to have a theory of Gröbner bases for a ring (like $K\left[\Sigma^{*}\right]$ or $K[M]$), it has to be a residue class ring of a path algebra.
- The ring $K\left[\Sigma^{*}\right]$ is the path algebra of the graph
- By using path algebras of more general graphs Γ, it is possible to build "hard" computational problems from graph theory into the computation of Gröbner bases for ideals or modules over the ring $K[\Gamma]$.

Conclusions

- For two-sided ideals in $K\left[\Sigma^{*}\right]$, Gröbner bases exist, but they may not be finite.
- For finitely generated right ideals and right submodules of free modules over $K\left[\Sigma^{*}\right]$, finite right Gröbner bases exist and are computable.
- If the appropriate Gröbner basis exists, one can solve
- the word problem for monoids
- the generalized word problem for monoids and groups
- the conjugation problem for groups
- the conjugator search problem for groups
- Gröbner basis cryptosystems rely on the inherent difficulty of computing certain Gröbner bases.
- Many classical cryptosystems can be viewed as Gröbner basis cryptosystems:
- Koblitz' polly cracker (and its generalizations)
- ElGamal (based on discrete log)
- RSA (based on integer factorization)
- Conjugator search cryptosystems (e.g. in braid groups)
- The difficulty of computing the Gröbner basis in question can be based on a number of factors:
- computing Gröbner bases is EXTSPACE-hard
- the attacker does not know the submodule U whose Gröbner basis he needs
- the free module has a large (or infinite) rank
- the operation of $K\left[\Sigma^{*}\right]$ on the basis vectors of F encodes difficult computational problems (e.g. discrete log or integer factorization)
- the structure of the base ring $K[\Gamma]$ encodes difficult computational tasks (e.g. from graph theory or combinatorics)
- For certain Gröbner basis computations, there are guaranteed lower complexity bounds.

