
Gröbner Basis Cryptosystems

§ 1 Gröbner Bases in Free Associative Algebras

K (commutative ) field

Σ = {x1, . . . , xn} finite alphabet

Σ∗ set of terms (or words) over Σ

A term w is of the form w = xi1xi2 · · ·xis

K[Σ∗] free associative K-algebra

f ∈ K[Σ∗] is of the form f = a1w1 + · · ·+ arwr with ai ∈ K

and wi ∈ Σ∗

Definition. A term ordering on Σ∗ is a well-ordering σ

such that

1) w1 ≥σ w2 ⇒ w3w1w4 ≥σ w3w2w4

2) w1w2w3 ≥σ w2

Examples. a) σ = llex length-lexicographic ordering

b) σ = tlex total lexicographic ordering

Definition. a) For f = a1w1 + · · ·+arwr ∈ K[Σ∗]\{0}, the

leading term of f is LTσ(f) = maxσ{wi}.

b) For a right-ideal I ⊆ K[Σ∗], the leading term ideal of I

is

LTσ(I) = 〈LTσ(f) | f ∈ I \ {0}〉
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and the right leading term ideal of I is

LTr
σ(I) = 〈LTσ(f) | f ∈ I \ {0}〉r

c) A subset G ⊆ I is called a σ-Gröbner basis of I if

LTσ(I) = 〈LTσ(g) | g ∈ G〉. It is called a right σ-Gröbner

basis of I if LTr
σ(I) = 〈LTσ(g) | g ∈ G〉r.

Questions: 1) Do Gröbner bases exist?

2) Can they be computed?

3) What are they good for?

Definition. Let I ⊆ K[Σ∗] be a right ideal and G ⊆ I.

a) The rewrite rule
G

−−→ defined by G is the reflexive, tran-

sitive closure of all
g

−−→ with g ∈ G, where f
g

−−→h means

that there is a term w ∈ Supp (f) such that w = LTσ(g)w′

and h = f − cgw′ with c ∈ K such that w /∈ Supp (h).

b) The rewrite rule
G

−−→ is called Noetherian if every chain

f1

g1

−−→ f2

g2

−−→· · · with g1, g2, . . . ,∈ G becomes eventually

stationary.

c) The rewrite rule
G

−−→ is called confluent if f1

G
−−→ f2 and

f1

G
−−→ f3 implies that there exists f4 such that f2

G
−−→ f4

and f3

G
−−→ f4.
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Proposition 1.1. Let I ⊆ K[Σ∗] be a right ideal and G ⊆ I.

a) The rewrite rule
G

−−→ is Noetherian.

b) G is a right σ-Gröbner basis of I iff
G

−−→ is confluent.

c) If
G

−−→ is confluent, every element f ∈ K[Σ∗] has a unique

normal form NFσ,I(f) such that f
G

−−→NFσ,I(f) and such

that NFσ,I(f) cannot be reduced further.

Definition. Given f1, f2 ∈ K[Σ∗] and w1, w2 ∈ Σ∗ such that

1) LTσ(f1)w1 = w2 LTσ(f2),

2) w1 is not a multiple of LTσ(f2) and w2 is not a multiple

of LTσ(f1),

we call S(f1, f2, w1, w2) = 1
LCσ(f1)

f1w1 − 1
LCσ(f2)

w2f2 the

S-polynomial of f1 and f2.

Theorem 1.2. (Buchberger Criterion)

Let I ⊆ K[Σ∗] be a two-sided ideal and G ⊆ I an LT-

reduced subset. Then G is a σ-Gröbner basis of I if and

only if S(g1, g2, w1, w2)
G

−−→ 0 for all S-polynomials of ele-

ments g1, g2 ∈ G.
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Theorem 1.3. (Buchberger’s Algorithm)

Let I = 〈f1, . . . , fs〉 be a two-sided ideal in K[Σ∗]. Consider

the following instructions.

1) Start with G = {g1, . . . , gs}, where gi = fi, and let B be

the set of all S-polynomials involving elements of G.

2) If B = ∅, return G and stop. Otherwise, choose S =

S(gi, gj , wi, wj) ∈ B and remove it from B.

3) Compute S′ = NRσ,G(S). If S′ = 0, continue with step 2).

4) Append S′ to G and all S-polynomials involving S ′ and

previous elements of G to B. Continue with step 2).

This is a procedure such that G = {g1, g2, . . .} is a σ-Gröbner

basis of I. If the procedure stops, the resulting set G is a finite

σ-Gröbner basis of I.

Remarks. a) A finite σ-Gröbner basis of I need not exist.

b) If I has a finite Gröbner basis, we can effectively compute

in the residue class ring K[Σ]/I.

c) If I is a finitely generated right ideal, it has a finite right σ-

Gröbner basis which can be computed in finitely many steps.

4



§ 2. Gröbner Bases for Monoid Rings

M finitely presented monoid, i.e. M = Σ∗/ ∼R, where

Σ∗ is the monoid of all terms in the alphabet Σ

∼R is the congruence relation on Σ∗ generated by finitely

many relations w1 ∼ w′

1, . . . , wr ∼ w′

r.

IM = 〈w1 − w′

1, . . . , wr − w′

r〉 ⊆ K[Σ∗]

K[M ] = K[Σ∗]/IM monoid ring

We assume that IM has a finite Gröbner basis, i.e. that we

can effectively compute in K[M ].

Many computational problems for monoids and groups can

be treated using Gröbner bases.

Proposition 2.1. (The Word Problem for Monoids)

For w1, w2 ∈ Σ∗, the following conditions are equivalent:

1) w̄1 = w̄2 in M

2) w1 − w2 ∈ IM (“ideal membership”)

Proposition 2.2. (The Generalized Word Problem for

Monoids)

Let S ⊆ M , and let 〈S〉 be the submonoid of M generated

by S. For w ∈ Σ∗, the following conditions are equivalent:

1) w̄ ∈ 〈S〉

2) w̄−1 ∈ K[s−1 | s∈S] ⊆ K[M ] (“subalgebra membership”)
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Prop. 2.3. (Generalized Word Problem for Groups)

Let M be a group, S ⊆ M a finite subset, and U = 〈S〉 the

subgroup of M generated by S. For w̄ ∈ K[M ], the following

conditions are equivalent:

1) w̄ ∈ U

2) w̄−1 ∈ 〈s−1 | s ∈ S〉r ⊆ K[M ] (“right ideal membership”)

Definition. Let f̄1, . . . , f̄s ∈ K[M ].

a) The right K[M ]-submodule Syzr
K[M ](f̄1, . . . , f̄s) =

{(ḡ1, . . . , ḡs) ∈ K[M ]s | f̄1ḡ1 + · · · + f̄sḡs = 0} of K[M ]s is

called the right syzygy module of (f̄1, . . . , f̄s).

b) The right K[M ]-module SyzK[M ](f̄1, . . . , f̄s) =

{(ḡ1, . . . , ḡs, h̄1, . . . , h̄s) ∈ (K[M ]op)s⊕K[M ]s | ḡ1f̄1h̄1+· · ·+

ḡsf̄sh̄s = 0} is called the (two-sided) syzygy module of

(f̄1, . . . , f̄s).

Prop. 2.4. (The Conjugation and the Conjugator

Search Problem for Groups)

Let M be a group. For w̄1, w̄2 ∈ M , the following conditions

are equivalent:

1) w̄1 = w̄3 w̄2 w̄−1
3 for some w̄3 ∈ M

2) SyzK[M ](w̄1, w̄2) ∩ {(e,−w̄, w̄, e) | w̄ ∈ M} 6= ∅

Proof: w̄1 = w̄3 w̄2 w̄−1
3 ⇐⇒ e · w̄1 · w̄3− w̄3 · w̄2 ·e = 0 �
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§ 3. Gröbner Bases for Right Modules

F =
⊕

λ∈Λ

K[Σ∗] free K[Σ∗]-module

{eλ | λ ∈ Λ} canonical basis of F

U ⊆ F right submodule

Definition. a) A term in F is an element of the form eλw

with λ ∈ Λ and w ∈ Σ∗.

b) A module term ordering τ is a well-ordering on the set

of terms in F such that

1) eλw1 ≤τ eµw2 ⇒ eλw3w1w4 ≤τ eµw3w2w4

2) eλ ≤τ eλw for all w ∈ Σ∗

c) For v =
∑

λ∈Λ eλwλ 6=, the leading term of v is LTτ (v) =

maxτ{vλ | vλ 6= 0}

d) The leading term module of U is the right submodule

LTτ (U) = 〈LTτ (v) | v ∈ U \ {0}〉r of F .

e) G ⊆ U is called a right τ-Gröbner basis of U if LTτ (U) =

〈LTτ (g) | g ∈ G〉r.

Remarks. a) One can extend Buchberger’s Algorithm to

right modules. Instead of S-polynomials one has to consider

S-vectors S(v1, v2, w1, w2) = 1
LCτ (v1) v1 −

1
LCτ (v2)

v2w.

b) U has a finite right τ -Gröbner basis G. One can decide

submodule membership and compute effectively in F/U .
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c) Every v ∈ F has a unique normal form v′ = NFτ,U (v)

which can be computed using G.

Proposition 3.1. (Macaulay Basis Theorem)

The residue classes of the terms in

Oτ (U) = {eλw | λ ∈ Λ, w ∈ Σ∗} \ LTτ (U)

form a K-basis of F/U .
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§ 4. Gröbner Basis Cryptosystems

M = Σ∗/ ∼R finitely presented monoid

F =
⊕

λ∈Λ

K[Σ∗] free K[Σ∗]-module

τ module term ordering

F̄ = F/IM F free K[M ]-module

U ⊆ F right submodule which represents a right submodule

Ū ⊆ F̄ , i.e. such that IM F ⊆ U

Public: F , τ , Oτ (U), vectors u1, . . . , us ∈ U

Secret: G right τ -Gröbner basis of U

Encoding: A plaintext unit is a vector v ∈ 〈Oτ (U)〉K , i.e.

a linear combination v = c1eλ1
w1 + · · · + creλr

wr such that

ci ∈ K, λi ∈ Λ, and wi ∈ Σ∗.

The corresponding ciphertext unit is w = v+u1f1+· · ·+usfs

with “randomly” chosen f1, . . . , fs ∈ K[Σ∗].

[Variant: w = (f0, vf0 + u1f1 + · · · + usfs)]

Decoding: Using
G

−−→, compute v = NFσ,G(w).

[Variant: NFσ,G(w) = vf0 and v = (vf0)/f0.]
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Remarks. a) If the attacker can compute G, he can break

the cryptosystem.

b) The attacker knows u1, . . . , us and Oτ (U), but not a sys-

tem of generators of U . We can make his task difficult by

choosing u1, . . . , us such that a Gröbner basis of 〈u1, . . . , us〉r

is hard to compute.

c) The computation of Gröbner bases is EXTSPACE-hard.

(I.e. the amount of memory it requires increases exponentially

with the size of the input.)

d) The advantage of using modules (rather than ideals in

K[Σ∗]) is that one can encode hard combinatorial or number

theoretic problems in the action of the terms on the canoncial

basis vectors (see examples below).

e) The free module F is not required to be finitely generated.

Any concrete calculation will involve only finitely many com-

ponents.
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Example 1. K = Fq finite field

M = N
n = Σ∗/ ∼R where R = {xixj ∼ xjxi}

F = K[Σ∗] non-commutative polynomial ring

τ = llex

K[M ] = K[x1, . . . , xn] commutative polynomial ring

Public: F , τ , Oτ (U) = {1}, ū1, . . . , ūs ∈ K[M ] commutative

polynomials such that ūi(a1, . . . , an) = 0

Secret: (a1, . . . , an) ∈ F
n
q , corresponding to the Gröbner basis

{x1−a1, . . . , xn −an} of the ideal Ū = (x1−a1, . . . , xn−an)

Encoding: A plaintext unit c ∈ Fq is encrypted as w =

c + u1f1 + · · · + usfs with “randomly chosen” polynomials

f1, . . . , fs ∈ K[M ].

Decoding: c = w(a1, . . . , an) = NFτ,G(w)

This is Neil Koblitz’ polly cracker cryptosystem. Its disad-

vantage is that the attacker knows that there is an element

in w + u1 · K[M ] + · · · + us · K[M ] which has support {1}.

Hence many coefficients have to vanish. This allows a linear

algebra attack.
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Example 2. K = F2, Σ = {x}, M = Σ∗ = N

K[M ] = K[x] polynomial ring in one indeterminate

p � 0 prime number

F =
p−1⊕

i=1

K[x]εi ⊕
p−1⊕

j=1

K[x]ej

g generator of F
∗

q

τ = PosDeg such that εgp−1 >τ · · · >τ εg >τ ε1 >τ

>τ e1 >τ eg >τ · · · >τ egp−1

Public: F , τ , Oτ (U) = {e1, e2, . . . , ep−1}, b = ga(mod p),

{u1, . . . , us} = {ε1−e1, xεi−εgi, xej−ebj | i, j = 1, . . . , p−1}

where all indices are computed modulo p.

Secret: a ∈ {1, . . . , p − 1}, G = {u1, . . . , us} ∪ {εi − eia | i =

1, . . . , p − 1} τ -Gröbner basis of U = 〈G〉

Encryption: A plaintext unit is of the form e1 + ec with

c ∈ {0, . . . , p − 1}. Using the variant, we randomly choose

k ∈ {0, . . . , p − 1} and form xk(e1 + ec). By adding suitable

elements ui we compute xk(e1+ec) = xkε1+xkec = εgk +ecbk

in F/〈u1, . . . , us〉. The ciphertext unit is w = εgk + ecbk .

Decryption: NFτ,U (w) = NF(ebk + ecbk ) = NF(xk(e1 + ec)).

In order to divide this vector by xk, it suffices to compute

c = (cbk)/(bk) in Fp and to form e1 + ec.
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This is the Gröbner basis version of the ElGamal cryptosys-

tem. It can be broken if the attacker is able to compute the

discrete logarithm a of b = ga or k of gk.

In the Gröbner basis version, the attacker has to reduce using

εgk

ui

−−→· · ·
uj

−−→xkε1
u1

−−→xke1 which takes k � 0 reduction

steps. If one knows a, one can get rid of the εi by using just

one reduction step εgk −→ εgka .

Example 3. Let K = F2, Σ = {x, y}, M = N
2

K[M ] = K[Σ∗]/〈xy − yx〉 = K[x, y] polynomial ring

p, q � 0 prime numbers, n = pq

F̄ =
⊕

i∈(Z/nZ)∗
K[x, y]εi, τ = DegLexPos

Public: F (and thus n), τ , Oτ (U) = {εi | i ∈ (Z/nZ)∗},

e ∈ (Z/(p−1)(q−1)Z)∗, {u1, . . . , us} = {xεi − εie , xyεj − εj |

i, j ∈ (Z/nZ)∗}

Secret: p, q, a number d ∈ {1, . . . , n − 1} which satisfies

de = 1(mod p−1) and de = 1(mod q−1), and the τ -Gröbner

basis G = {u1, . . . , us}∪{yεi−εid | i ∈ (Z/nZ)∗} of U = 〈G〉.

Encryption: A plaintext unit is a vector εc ∈ Oτ (U). To

encrypt it, we form xyεc and add elements of {u1, . . . , us} to

obtain the cyphertext unit w = yεce .

Decryption: Compute NFτ,U (yεce) = NFτ,U (εced) = εc.
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This is the Gröbner basis version of the RSA cryptosystem.

If the attacker is able to factor n, he can break the code. It

is easy to see that this is equivalent to being able to find d.

In the Gröbner basis version, the problem the attacker faces

is that he doesn’t know the Gröbner basis elements yεi − εid

which are not even elements of the submodule 〈u1, . . . , us〉

that he knows.

Example 4: Let K be a field and M = Σ∗/ ∼R a finitely

presented group.

K[M ] = K[Σ∗]/IM

F̄ =
⊕

w̄∈M

εw̄ K[M ] ⊕
⊕

w̄∈M

ew̄ K[M ] free right K[M ]-module

τ = llex such that εw̄ >τ eū for all w, u ∈ Σ∗

Public: F , τ , g, g′ ∈ M such that g′ = a−1ga, Oτ (U) = {ew̄ |

w̄ ∈ M}, and {uλ | λ ∈ Λ} = {εih − εh−1ih, εg − eg′ , ejk −

ek−1jk | i, j, h, k ∈ M}

Secret: a ∈ M , or equivalently, the τ -Gröbner basis G =

{uλ | λ ∈ Λ} ∪ {εi − ea−1ia | i ∈ M} of U = 〈G〉r ⊆ F

Encryption: A plaintext unit m ∈ M is written in the form

εg + eg′m̃, where m̃ = bmb−1. Then we multiply by the

“randomly” chosen element b ∈ {c ∈ M | ca = ac} and use

the elements uλ to compute w = εb−1gb + eb−1g′m̃b.
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Decryption: Compute NFτ,G(w) = NFτ,G(ea−1g′′a+eb−1g′bm)

= NFτ,G(eb−1g′b + eb−1g′b m), where g′′ = b−1gb. Then deter-

mine m from the relation m = (b−1g′bm)/(b−1g′b).

This is Gröbner basis version of an ElGamal like cryptosys-

tem based on a group with a “hard” conjugator search prob-

lem (e.g. braid groups). The attacker can break the code if

he can determine a from g and g′ = a−1ga. The advantage

of knowing the Gröbner basis of that one can pass from εg′′

to the corresponding ei without going through εg = eg′ . The

computation of that Gröbner basis is equivalent to finding a.

§ 5. A Possible Generalization

• If one wants to have a theory of Gröbner bases for a ring

(like K[Σ∗] or K[M ]), it has to be a residue class ring of a

path algebra.

• The ring K[Σ∗] is the path algebra of the graph

• By using path algebras of more general graphs Γ, it is

possible to build “hard” computational problems from graph

theory into the computation of Gröbner bases for ideals or

modules over the ring K[Γ].
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Conclusions

• For two-sided ideals in K[Σ∗], Gröbner bases exist, but

they may not be finite.

• For finitely generated right ideals and right submodules of

free modules over K[Σ∗], finite right Gröbner bases exist and

are computable.

• If the appropriate Gröbner basis exists, one can solve

— the word problem for monoids

— the generalized word problem for monoids and groups

— the conjugation problem for groups

— the conjugator search problem for groups

• Gröbner basis cryptosystems rely on the inherent difficulty

of computing certain Gröbner bases.

• Many classical cryptosystems can be viewed as Gröbner

basis cryptosystems:

— Koblitz’ polly cracker (and its generalizations)

— ElGamal (based on discrete log)

— RSA (based on integer factorization)

— Conjugator search cryptosystems (e.g. in braid groups)
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• The difficulty of computing the Gröbner basis in question

can be based on a number of factors:

— computing Gröbner bases is EXTSPACE-hard

— the attacker does not know the submodule U

whose Gröbner basis he needs

— the free module has a large (or infinite) rank

— the operation of K[Σ∗] on the basis vectors of F encodes

difficult computational problems (e.g. discrete log or

integer factorization)

— the structure of the base ring K[Γ] encodes difficult

computational tasks (e.g. from graph theory or

combinatorics)

• For certain Gröbner basis computations, there are guaran-

teed lower complexity bounds.
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