The first form of this function returns TRUE if F is homogeneous.
The second form returns TRUE if every element of L is homogeneous.
Otherwise, they return FALSE. The third form returns TRUE if the
ideal/module can be generated by homogeneous elements, and FALSE
if not. Homogeneity is with respect to the first row of the weights
matrix.
|
Use R ::= Q[x,y];
IsHomog(x^2-xy);
TRUE
-------------------------------
IsHomog(x-y^2);
FALSE
-------------------------------
IsHomog([x^2-xy,x-y^2]);
FALSE
------------------------------
Use R ::= Q[x,y],Weights(Mat([[2,3],[1,2]]));
IsHomog(x^3y^2+y^4);
TRUE
-------------------------------
Use R ::= Q[x,y];
IsHomog(Ideal(x^2+y,y));
TRUE
-------------------------------
|