previous  next
HilbertPoly
Syntax
Hilbert(R:RING or TAGGED("Quotient")):POLY in the ring Qt.
Summary
the Hilbert polynomial
Description
This function returns the Hilbert polynomial for R as a polynomial in
the standard CoCoA ring Qt (= Q[t]).  

The weights of the indeterminates of R must all be 1, and the
coefficient ring must be a field.

If the input is not homogeneous, the Hilbert polynomial of the
corresponding leading term (initial) ideal or module is calculated.
For the Hilbert *function*, see 'Hilbert'.

Example

Use R ::= Q[w,x,y,z];
I := Ideal(z^2-xy,xz^2+w^3);
Hilbert(R/I);
H(0) = 1
H(1) = 4
H(t) = 6t-3   for t >= 2
-------------------------------
F := HilbertPoly(R/I);
F;  -- a polynomial in the ring Qt
Qt :: 6t-3
-------------------------------
Subst(F,Qt::t,3);
Qt :: 15
-------------------------------
See also: