This function returns the normal remainder of X with respect to L,
i.e., it returns the remainder from the division algorithm. To get
both the quotients and the remainder, use 'DivAlg'. Note that if the
list does not form a Groebner basis, the remainder may not be zero even
if X is in the ideal or module generated by L (use 'GenRepr' or 'NF'
instead).
|
Use R::= Q[xyz];
F := x^2y+xy^2+y^2;
NR(F,[xy-1,y^2-1]);
x + y + 1
-------------------------------
V := Vector(x^2+y^2+z^2,xyz);
NR(V,[Vector(x,y),Vector(y,z),Vector(z,x)]);
Vector(z^2, z^3 - yz - z^2)
-------------------------------
|