If M is an ideal or module, this function returns a list of minimal
generators for M. If M is the quotient of the current ring by an
ideal I or the quotient of a free module by the submodule N, then
MinGens returns a set of minimal generators for I or N, respectively.
The coefficient ring must be a field.
The input must be homogeneous. The similar command 'Minimalized',
will accept inhomogeneous input.
|
Use R ::= Q[x,y,z];
I:=Ideal(x-y,(x-y)^4,z+y,(z+y)^2);
I;
Ideal(x - y, x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4, y + z, y^2 + 2yz + z^2)
-------------------------------
MinGens(I);
[y + z, x + z]
-------------------------------
MinGens(R/I);
[y + z, x + z]
-------------------------------
M :=Module([x+y,x-y],[(x+y)^2,(x+y)(x-y)]);
MinGens(M);
[Vector(x + y, x - y)]
-------------------------------
MinGens(R^2/M);
[Vector(x + y, x - y)]
-------------------------------
|