Idealization of Modules in Computer Algebra

Martin Kreuzer and Lorenzo Robbiano

Chisinau, June 10, 2004

1. What is Idealization of Modules?

Let R be a ring and M an R-module. We turn the set $R \times M$ into a ring by componentwise addition and

$$
(r, m) \cdot\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+r^{\prime} m\right)
$$

This ring is called the idealization of M.
Remarks. a) The image of M in $R \times M$ under the injective map $\imath: M \longrightarrow R \times M$ defined by $m \mapsto(0, m)$ is an ideal.
b) The ideal $\imath(M)$ satisfies $\imath(M)^{2}=0$.
c) Given an R-submodule $N \subseteq M$, the inclusion $R \times N \subseteq$ $R \times M$ is an injective ring homomorphism.
d) Let Γ be a monoid, let R be Γ-graded, and let M be a Γ-graded R-module. Then $R \times M$ is a Γ-graded ring via $(R \times M)_{\gamma}=R_{\gamma} \times M_{\gamma}$ for all $\gamma \in \Gamma$, and $\imath(M)$ is a homogeneous ideal in this ring.

2. Idealization of Graded Submodules

K field
$P=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring
P is graded by a positive matrix $W \in \operatorname{Mat}_{m, n}(\mathbb{Z})$
$\operatorname{deg}_{W}\left(x_{i}\right)>_{\text {Lex }} 0$ is the $i^{\text {th }}$ column of W
$d_{01}, \ldots, d_{0 r} \in \mathbb{Z}^{m}$
$F_{0}=\bigoplus_{i=1}^{r} P\left(-d_{0 i}\right)$ graded free P-module
$M \subseteq F_{0}$ graded submodule
$\mathcal{V}=\left(v_{1}, \ldots, v_{s}\right)$ deg-ordered tuple of non-zero homogeneous vectors which generate M

Proposition 1. (Idealization of a Free Module)

The map $\varphi: P \times F_{0} \longrightarrow \bar{P} / \mathfrak{e}$ which sends $\left(f,\left(g_{1}, \ldots, g_{r}\right)\right)$ to the residue class of $f+g_{1} e_{1}+\cdots+g_{r} e_{r}$ is an isomorphism of graded rings. Here we equip $\bar{P}=K\left[x_{1}, \ldots, x_{n}, e_{1}, \ldots, e_{r}\right]$ with the grading given by $\bar{W}=\left(W \mid d_{01} \cdots d_{0 r}\right)$ and \mathfrak{e} is the ideal generated by

$$
E=\left\{e_{i} e_{j} \mid 1 \leq i \leq j \leq r\right\} \subseteq \bar{P}
$$

Proposition 2. (Idealization of a Graded Submodule)

 Under the composition $M \xrightarrow{\imath} P \times M \longleftrightarrow P \times F_{0} \xrightarrow{\varphi} \bar{P} / \mathfrak{e}$, the module M is identified with the residue class ideal of $I_{M}=\left(v_{1}, \ldots, v_{s}\right)+\mathfrak{e}$.The ideal I_{M} is called the (idealization) ideal of M.

Questions. a) How do Gröbner bases behave under this process?
b) How are minimal homogeneous systems of generators of M and I_{M} related to each other?
c) Can the syzygy module $\operatorname{Syz}_{P}(\mathcal{V})$ be computed using idealization?
d) What are the advantages of using the idealization ideal I_{M} instead of M ?

3. Gröbner Bases and Idealization

Let τ be a term ordering on \mathbb{T}^{n}, the monoid of terms in P.

Let σ be a module term ordering on $\mathbb{T}^{n}\left\langle e_{1}, \ldots, e_{r}\right\rangle$ which is compatible with τ, i.e. such that $t \geq_{\tau} t^{\prime}$ implies $t e_{i} \geq_{\sigma} t^{\prime} e_{i}$ for $i=1, \ldots, r$.

Let $\bar{\sigma}$ be a term ordering on $\mathbb{T}\left(x_{1}, \ldots, x_{n}, e_{1}, \ldots, e_{r}\right)$ which extends both σ and τ.

Proposition 3. (Gröbner Bases and Idealization)

a) Let G be a σ-Gröbner basis of M. Then $G \cup E$ is a $\bar{\sigma}$-Gröbner basis of I_{M}.
b) Let G be the reduced σ-Gröbner basis of M. Then the reduced $\bar{\sigma}$-Gröbner basis of I_{M} is

$$
G \cup\left\{e_{i} e_{j} \in E \mid e_{i}, e_{j} \notin \mathrm{LT}_{\sigma}(M)\right\}
$$

In particular, the reduced $\bar{\sigma}$-Gröbner basis of I_{M} is $G \cup E$ if $M \subseteq\left(x_{1}, \ldots, x_{n}\right) F_{0}$.

4. Idealization and Minimal Homogeneous Generators

Assume that $M \subseteq\left(x_{1}, \ldots, x_{n}\right) F_{0}$.
Let $d_{0 i}>_{\text {Lex }} 0$ for $i=1, \ldots, r$. (Then \bar{P} is positively graded.)
Let $\mathcal{E}=\left(e_{1} e_{1}, e_{1} e_{2}, \ldots, e_{1} e_{r}, e_{2} e_{2}, e_{2} e_{3}, \ldots, e_{2} e_{r}, \ldots, e_{r} e_{r}\right)$

Proposition 4. (Idealization and Minimal Generators)

a) Let \mathcal{V} be a minimal set of generators of M. Then the set $\left\{v_{1}, \ldots, v_{s}\right\} \cup E$ is a minimal set of generators of I_{M}.
b) If we apply Buchberger's Algorithm with Minimalization (BAM) to the tuple $(\mathcal{V} \mid \mathcal{E})$, it computes a minimal system of generators of the ideal $I_{M} \subseteq \bar{P}$ of the form $\left(\mathcal{V}_{\min } \mid \mathcal{E}\right)$, where $\mathcal{V}_{\text {min }}$ is a minimal set of generators of M. In particular, the elements of \mathcal{E} are minimal generators of I_{M}.
c) If we apply the variant of BAM to the tuple $(\mathcal{V} \mid \mathcal{E})$, it computes a homogeneous $\bar{\sigma}$-Gröbner basis of I_{M} of the form $(\mathcal{G} \mid \mathcal{E})$ and a minimal set of generators of the form $\left(\mathcal{G}_{\min } \mid \mathcal{E}\right)$, where \mathcal{G} is a σ-Gröbner basis of M and $\mathcal{G}_{\min }$ is a minimal set of generators of M which is contained in \mathcal{G}.

The Buchberger Algorithm with Minimalization

1) Let $B=\emptyset, \mathcal{W}=\mathcal{V}, \mathcal{G}=\emptyset, s^{\prime}=0$, and $\mathcal{V}_{\text {min }}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element in B or in \mathcal{W}. Form the subset $B_{d}=\{(i, j) \in B \mid$ $\left.\operatorname{deg}_{W}\left(\sigma_{i j}\right)=d\right\}$ and the subtuple \mathcal{W}_{d} of elements of degree d in \mathcal{W}, and delete their entries from B and \mathcal{W}, respectively.
3) If $B_{d}=\emptyset$, continue with step 6). Otherwise, choose a pair $(i, j) \in B_{d}$ and remove it from B_{d}.
4) Compute the S -vector $S_{i j}$ and its normal remainder $S_{i j}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}\left(S_{i j}\right)$. If $S_{i j}^{\prime}=0$, continue with step 3$)$.
5) Increase s^{\prime} by one, append $g_{s^{\prime}}=S_{i j}^{\prime}$ to the tuple \mathcal{G}, and append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to the set B. Continue with step 3).
6) If $\mathcal{W}_{d}=\emptyset$, continue with step 9). Otherwise, choose a vector $v \in \mathcal{W}_{d}$ and remove it from \mathcal{W}_{d}.
7) Compute $v^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}(v)$. If $v^{\prime}=0$, continue with step 6).
8) Increase s^{\prime} by one, append $g_{s^{\prime}}=v^{\prime}$ to the tuple \mathcal{G}, append v to the tuple $\mathcal{V}_{\text {min }}$, and append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<\right.$ $\left.s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to the set B. Continue with step 6).
9) If $B=\emptyset$ and $\mathcal{W}=\emptyset$, return the pair $\left(\mathcal{G}, \mathcal{V}_{\text {min }}\right)$ and stop. Otherwise, continue with step 2).
This is an algorithm which returns a deg-ordered tuple $\mathcal{G}=$ $\left(g_{1}, \ldots, g_{s^{\prime}}\right)$ whose elements are a homogeneous σ-Gröbner basis of M and a deg-ordered minimal system of generators $\mathcal{V}_{\text {min }}$ of M which is a subtuple of \mathcal{V}.

The Variant of BAM

1) Let $B=\emptyset, \mathcal{W}=\mathcal{V}, \mathcal{G}=\emptyset, s^{\prime}=0$, and $\mathcal{G}_{\text {min }}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element in B or in \mathcal{W}. Form the subset $B_{d}=\{(i, j) \in B \mid$ $\left.\operatorname{deg}_{W}\left(\sigma_{i j}\right)=d\right\}$ and the subtuple \mathcal{W}_{d} of elements of degree d in \mathcal{W}, and delete their entries from B and \mathcal{W}, respectively.
3) If $B_{d}=\emptyset$, continue with step 6). Otherwise, choose a pair $(i, j) \in B_{d}$ and remove it from B_{d}.
4) Compute the S -vector $S_{i j}$ and its normal remainder $S_{i j}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}\left(S_{i j}\right)$. If $S_{i j}^{\prime}=0$, continue with step 3$)$.
5) Increase s^{\prime} by one, append $g_{s^{\prime}}=S_{i j}^{\prime}$ to the tuple \mathcal{G}, and append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to the set B. Continue with step 3).
6) If $\mathcal{W}_{d}=\emptyset$, continue with step 9$)$. Otherwise, choose a vector $v \in \mathcal{W}_{d}$ and remove it from \mathcal{W}_{d}.
7) Compute $v^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}(v)$. If $v^{\prime}=0$, continue with step 6).
8) Increase s^{\prime} by one, append $g_{s^{\prime}}=v^{\prime}$ to the tuples \mathcal{G} and $\mathcal{G}_{\min }$, and append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to the set B. Continue with step 6$)$.
9) If $B=\emptyset$ and $\mathcal{W}=\emptyset$, return the pair $\left(\mathcal{G}, \mathcal{G}_{\text {min }}\right)$ and stop. Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered homogeneous σ-Gröbner basis $\mathcal{G}=\left(g_{1}, \ldots, g_{s^{\prime}}\right)$ of M and a subtuple $\mathcal{G}_{\text {min }}$ of \mathcal{G} which generates M minimally.

5. Idealization of a Homogeneous Presentation

If $F_{2} \xrightarrow{\psi} F_{1} \xrightarrow{\varphi} M \longrightarrow 0$ is a homogeneous presentation of M and $d \in \mathbb{Z}^{m}$, then

$$
F_{2}(d) \xrightarrow{\tilde{\psi}} F_{1}(d) \xrightarrow{\tilde{\varphi}} M(d) \longrightarrow 0
$$

is a homogeneous presentation of $M(d)$. Therefore we shall from now on assume $d_{0 i}>_{\text {Lex }} 0$ for $i=1, \ldots, r$. In particular, \bar{P} is then positively graded by \bar{W}.
$\mathcal{V}=\left(v_{1}, \ldots, v_{s}\right)$ is a deg-ordered homogeneous tuple which generates M
$d_{1 i}=\operatorname{deg}_{W}\left(v_{i}\right)>_{\text {Lex }} 0$ for $i=1, \ldots, s$
$F_{1}=\bigoplus_{i=1}^{s} P\left(-d_{1 i}\right)$ graded free P-module
$\left\{\epsilon_{1}, \ldots, \epsilon_{s}\right\}$ canonical basis of F_{1}
$\operatorname{Syz}_{P}(\mathcal{V})$ is a graded submodule of F_{1}
$\widetilde{P}=K\left[x_{1}, \ldots, x_{n}, e_{1}, \ldots, e_{r}, \epsilon_{1}, \ldots, \epsilon_{s}\right]$ is positively
graded by $\widetilde{W}=\left(W\left|d_{01} \cdots d_{0 r}\right| d_{11} \cdots d_{1 s}\right)$.

Proposition 5. (Idealization of a Presentation)

a) The idealization of $F_{0} \oplus F_{1}$ the ring $\widetilde{P} / \tilde{\mathfrak{e}}$, where $\tilde{\mathfrak{e}}$ is the ideal generated by $\left\{e_{i} e_{j}\right\} \cup\left\{e_{i} \epsilon_{j}\right\} \cup\left\{\epsilon_{i} \epsilon_{j}\right\}$.
b) If $\left(f_{1}, \ldots, f_{s}\right) \in \operatorname{Syz}_{P}(\mathcal{V})$ is a homogeneous syzygy of \mathcal{V}, then the corresponding element $f_{1} \epsilon_{1}+\cdots+f_{s} \epsilon_{s}$ of \widetilde{P} is contained in the ideal $\left(v_{1}-\epsilon_{1}, \ldots, v_{s}-\epsilon_{s}\right)$.

The ideal $\tilde{I}_{M}=\left(v_{1}-\epsilon_{1}, \ldots, v_{s}-\epsilon_{s}\right)+\tilde{\mathfrak{e}}$ in \widetilde{P} is called the ideal of the presentation of M.
c) There exists a unique P-algebra homomorphism

$$
\Phi: P\left[\epsilon_{1}, \ldots, \epsilon_{s}\right] /\left(\epsilon_{i} \epsilon_{j}\right)_{i, j=1, \ldots, s} \longrightarrow \bar{P} / \mathfrak{e}
$$

which maps the residue class of ϵ_{i} to $v_{i}+\mathfrak{e}$ for $i=1, \ldots, s$.
d) The image of Φ is the residue class ideal of the ideal of M.
e) The kernel of Φ is the residue class ideal of the ideal of $\operatorname{Syz}_{P}(\mathcal{V})$.
f) The ideal of $\operatorname{Syz}_{P}(\mathcal{V})$ is given by $\tilde{I}_{M} \cap P\left[\epsilon_{1}, \ldots, \epsilon_{s}\right]$.

6. Computing Minimal Presentations Vertically

1) Choose a term ordering σ on $\mathbb{T}^{n}\left(e_{1}, \ldots, e_{r}\right)$. Let $B=\emptyset, \mathcal{W}=\mathcal{V}, \mathcal{G}=\emptyset, s^{\prime}=0, \mathcal{G}_{\min }=\emptyset, \mu=0$, and $\mathcal{S}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element in B or in \mathcal{W}. Form the subset B_{d} and the subtuple \mathcal{W}_{d}, and delete their entries from B and \mathcal{W}, respectively.
3) If $B_{d}=\emptyset$, continue with step 6). Otherwise, chose a pair $(i, j) \in B_{d}$ and remove it from B_{d}.
4) Compute the S -vector $S_{i j}$ of g_{i} and g_{j}. Then compute $S_{i j}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}\left(S_{i j}\right)$. If $S_{i j}^{\prime}=0$ continue with step 3$)$. If $S_{i j}^{\prime} \neq 0$ and it does not involve the indeterminates e_{1}, \ldots, e_{r}, then append it to \mathcal{S} and continue with step 3).
5) Increase s^{\prime} by one, append $g_{s^{\prime}}=S_{i j}^{\prime}$ to the tuple \mathcal{G}, and append the set $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to B. Then continue with step 3).
6) If $\mathcal{W}_{d}=\emptyset$, continue with step 9$)$. Otherwise, choose a vector $v \in \mathcal{W}_{d}$ and remove it from \mathcal{W}_{d}.
7) Compute $v^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}(v)$ and $\bar{v}=\left.v^{\prime}\right|_{\epsilon_{j} \mapsto 0}$. If $\bar{v}=0$, continue with step 6).
8) Increase s^{\prime} and μ by one. Adjoin a new indeterminate ϵ_{μ} to \bar{P} and extend the grading to this new ring by defining $\operatorname{deg}_{\bar{W}}\left(\epsilon_{\mu}\right)=\operatorname{deg}_{\bar{W}}(\bar{v})$. Extend the term ordering σ to the new ring in such a way that the extension is an elimination ordering for $\left\{e_{1}, \ldots, e_{r}\right\}$. Append $g_{s^{\prime}}=\bar{v}-\epsilon_{\mu}$ to \mathcal{G} and \bar{v} to $\mathcal{G}_{\text {min }}$. Append the set $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to B. Continue with step 6$)$.
9) If $B \neq \emptyset$ or $\mathcal{W} \neq \emptyset$, continue with step 2).
10) Apply the Buchberger Algorithm with Minimalization to the module generated by \mathcal{S} and obtain a subtuple $\mathcal{S}_{\text {min }}$ of \mathcal{S} which minimally generates that module. Return the pair $\left(\mathcal{G}_{\text {min }}, \mathcal{S}_{\text {min }}\right)$ and stop.

This is an algorithm which computes a pair $\left(\mathcal{G}_{\min }, \mathcal{S}_{\text {min }}\right)$ such that $\mathcal{G}_{\text {min }}$ is a deg-ordered tuple of homogeneous vectors in F_{0} which generate M minimally, and such that $\mathcal{S}_{\text {min }}$ is a degordered tuple of homogeneous vectors in $\bigoplus_{i=1}^{\mu} P\left(-d_{1 i}\right)$ which generate $\operatorname{Syz}_{P}\left(\mathcal{G}_{\text {min }}\right)$ minimally.

Here μ is the number of elements in $\mathcal{G}_{\text {min }}$ and $d_{1 i}$ is the degree of the $i^{\text {th }}$ element in $\mathcal{G}_{\text {min }}$ for $i=1, \ldots, \mu$.

7. Computing Minimal Presentations Horizontally

1) Choose a term ordering σ on $\mathbb{T}^{n}\left(e_{1}, \ldots, e_{r}\right)$. Let $B=\emptyset, B^{\prime}=\emptyset, \mathcal{W}=\mathcal{V}, \mathcal{G}=\emptyset, s^{\prime}=0, \mathcal{G}_{\text {min }}=\emptyset, \mu=0$, $\mathcal{S}=\emptyset, s^{\prime \prime}=0$, and $\mathcal{S}_{\text {min }}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element in $B \cup B^{\prime}$ or in \mathcal{W}. Form the subset B_{d} of B, the subset B_{d}^{\prime} of B^{\prime}, the subtuple \mathcal{W}_{d} of \mathcal{W}, and delete their entries from B, B^{\prime}, and \mathcal{W}, respectively.
3) If $B_{d}^{\prime}=\emptyset$, continue with step 6). Otherwise, choose a pair $(i, j) \in B_{d}^{\prime}$ and remove it from B_{d}^{\prime}.
4) Compute the S -vector of h_{i} and h_{j} and call it $S_{i j}$. Then compute the normal remainder $S_{i j}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{S}}\left(S_{i j}\right)$. If $S_{i j}^{\prime}=0$, continue with step 3).
5) Increase $s^{\prime \prime}$ by one, append $h_{s^{\prime \prime}}=S_{i j}^{\prime}$ to the tuple \mathcal{S}, append the set $\left\{\left(i, s^{\prime \prime}\right) \mid 1 \leq i<s^{\prime \prime}, \eta_{i}=\eta_{s^{\prime \prime}}\right\}$ to B^{\prime}, and continue with step 3).
6) If $B_{d}=\emptyset$, continue with step 10). Otherwise, choose a pair $(i, j) \in B_{d}$ and remove it from B_{d}.
7) Compute the S -vector of g_{i} and g_{j} and call it $S_{i j}$. Then compute the normal remainder $S_{i j}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}\left(S_{i j}\right)$. If $S_{i j}^{\prime}$ involves one of the indeterminates e_{1}, \ldots, e_{r}, then increase s^{\prime} by one, append $g_{s^{\prime}}=S_{i j}^{\prime}$ to \mathcal{G}, append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<\right.$ $\left.s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to B, and continue with step 6).
8) Compute the normal remainder $S_{i j}^{\prime \prime}=\mathrm{NR}_{\sigma, \mathcal{S}}\left(S_{i j}^{\prime}\right)$. If $S_{i j}^{\prime \prime}=0$, continue with step 6).
9) Increase $s^{\prime \prime}$ by one. Append $h_{s^{\prime \prime}}=S_{i j}^{\prime \prime}$ to the tuples \mathcal{S} and $\mathcal{S}_{\text {min }}$. Append $\left\{\left(i, s^{\prime \prime}\right) \mid 1 \leq i<s^{\prime \prime}, \eta_{i}=\eta_{s^{\prime \prime}}\right\}$ to B^{\prime}. Continue with step 6).
10) If $\mathcal{W}_{d}=\emptyset$, continue with step 13). Otherwise, choose a vector $v \in \mathcal{W}_{d}$ and remove it from \mathcal{W}_{d}.
11) Compute $v^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}(v)$ and $\bar{v}=\left.v^{\prime}\right|_{\epsilon_{j} \mapsto 0}$. If $\bar{v}=0$, continue with step 10).
12) Increase s^{\prime} and μ by one. Adjoin a new indeterminate ϵ_{μ} to \bar{P} and extend the grading to this new ring by defining $\operatorname{deg}_{\bar{W}}\left(\epsilon_{\mu}\right)=\operatorname{deg}_{\bar{W}}\left(v^{\prime}\right)$. Extend the term ordering σ to the new ring in such a way that the extension is an elimination ordering for $\left\{e_{1}, \ldots, e_{r}\right\}$. Append $g_{s^{\prime}}=\bar{v}-\epsilon_{\mu}$ to the tuple \mathcal{G} and \bar{v} to $\mathcal{G}_{\text {min }}$. Append $\left\{\left(i, s^{\prime}\right) \mid 1 \leq i<s^{\prime}, \gamma_{i}=\gamma_{s^{\prime}}\right\}$ to B. Continue with step 10).
13) If $B=B^{\prime}=\emptyset$ and $\mathcal{W}=\emptyset$, then return the pair $\left(\mathcal{G}_{\text {min }}, \mathcal{S}_{\text {min }}\right)$ and stop. Otherwise, continue with step 2).

This is an algorithm which computes a pair $\left(\mathcal{G}_{\text {min }}, \mathcal{S}_{\text {min }}\right)$ such that $\mathcal{G}_{\text {min }}$ is a deg-ordered tuple of homogeneous vectors in F_{0} which generate M minimally, and such that $\mathcal{S}_{\text {min }}$ is a degordered tuple of homogeneous vectors in $\bigoplus_{i=1}^{\mu} P\left(-d_{1 i}\right)$ which generate $\operatorname{Syz}_{P}\left(\mathcal{G}_{\text {min }}\right)$ minimally.

Here μ is the number of elements in $\mathcal{G}_{\text {min }}$ and $d_{1 i}$ is the degree of the $i^{\text {th }}$ element in $\mathcal{G}_{\text {min }}$ for $i=1, \ldots, \mu$.

8. Idealization of Minimal Graded Free Resolutions

Let $\mathcal{V}=\left(v_{1}, \ldots, v_{s}\right)$ be a deg-ordered tuple of homogeneous vectors generating a P-submodule M of $F_{0}=\bigoplus_{i=1}^{r_{0}} P\left(-d_{0 i}\right)$.
The graded free resolution of M has the shape

$$
0 \longrightarrow F_{\ell} \xrightarrow{\varphi_{\ell}} F_{\ell-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} M \longrightarrow 0
$$

where F_{0}, \ldots, F_{ℓ} are finitely generated graded free P-modules and for every $i \in\{1, \ldots, \ell\}$ the homogeneous homomorphism φ_{i} maps the canonical basis of F_{i} to a minimal homogeneous system of generators of $\operatorname{Ker}\left(\varphi_{i-1}\right)$.

Recall that $\ell \leq n$.
We may assume that $d_{0 i}>_{\text {Lex }} 0$ for $i=1, \ldots, r_{0}$.
We write $F_{i}=\bigoplus_{j=1}^{r_{i}} P\left(-d_{i j}\right)$.
The canonical basis $\left\{\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right\}$ of F_{i} is always kept deg-ordered.

Remarks. a) The idealization of $F_{0} \oplus F_{1} \oplus \cdots \oplus F_{n}$ is a residue class ring of the polynomial ring

$$
\widetilde{P}=K\left[\left\{\epsilon_{j}^{(i)} \mid i \in\{0, \ldots, n\}, j \in\left\{1, \ldots, r_{i}\right\}\right\}\right]
$$

b) The elements of F_{i} can be identified with their images in \widetilde{P}.

9. Computing Minimal Resolutions Vertically

1) Let $i=0$. Equip $\bar{P}=P\left[\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right]$ with the grading defined by $\bar{W}=\left(W \mid d_{i 1} \cdots d_{i r_{i}}\right)$. Choose a term ordering σ on $\mathbb{T}^{n}\left(\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right)$. Let $B=\emptyset, \mathcal{W}=\mathcal{V}, \mathcal{G}=\emptyset, s^{\prime}=0$, $\mathcal{G}_{\text {min }}^{(i)}=\emptyset, r_{i+1}=0$, and $\mathcal{S}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element in B or in \mathcal{W}. Form the subset B_{d} and the subtuple \mathcal{W}_{d}, and delete their entries from B and \mathcal{W}, respectively.
3) If $B_{d}=\emptyset$, continue with step 6). Otherwise, chose a pair $(j, k) \in B_{d}$ and remove it from B_{d}.
4) Form the S-vector $S_{j k}$ of g_{j} and g_{k}. Then compute $S_{j k}^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}\left(S_{j k}\right)$. If $S_{j k}^{\prime}=0$ continue with step 3). If $S_{j k}^{\prime} \neq$ 0 and it does not involve the indeterminates $\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}$, then append it to \mathcal{S} and continue with step 3).
5) Increase s^{\prime} by one, append $g_{s^{\prime}}=S_{j k}^{\prime}$ to the tuple \mathcal{G}, and append the set $\left\{\left(j, s^{\prime}\right) \mid 1 \leq j<s^{\prime}, \gamma_{j}=\gamma_{s^{\prime}}\right\}$ to B. Then continue with step 3).
6) If $\mathcal{W}_{d}=\emptyset$, continue with step 9$)$. Otherwise, choose a vector $v \in \mathcal{W}_{d}$ and remove it from \mathcal{W}_{d}.
7) Compute $v^{\prime}=\mathrm{NR}_{\sigma, \mathcal{G}}(v)$ and $\bar{v}=\left.v^{\prime}\right|_{\epsilon_{j}^{(i+1)} \mapsto 0}$. If $\bar{v}=0$, continue with step 6).
8) Increase s^{\prime} and r_{i+1} by one. Adjoin a new indeterminate $\epsilon_{r_{i+1}}^{(i+1)}$ to \bar{P} and extend the grading to this new ring by defining $\operatorname{deg}_{\bar{W}}\left(\epsilon_{r_{i+1}}^{(i+1)}\right)=\operatorname{deg}_{\bar{W}}(\bar{v})$. Extend the term ordering σ to the new ring in such a way that the extension is an elimination ordering for $\left\{\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right\}$. Append the element
$g_{s^{\prime}}=\bar{v}-\epsilon_{r_{i+1}}^{(i+1)}$ to \mathcal{G} and the element \bar{v} to $\mathcal{G}_{\min }^{(i)}$. Append the set $\left\{\left(j, s^{\prime}\right) \mid 1 \leq j<s^{\prime}, \gamma_{j}=\gamma_{s^{\prime}}\right\}$ to B. Continue with step 6).
9) If $B \neq \emptyset$ or $\mathcal{W} \neq \emptyset$, continue with step 2).
10) If $\mathcal{S} \neq 0$, then increase i by one and equip $\bar{P}=$ $P\left[\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right]$ with the grading defined by the matrix $\bar{W}=$ $\left(W \mid d_{i 1} \cdots d_{i r_{i}}\right)$. Restrict σ to $\mathbb{T}^{n}\left(\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right)$. Let $B=\emptyset$, $\mathcal{W}=\mathcal{S}, \mathcal{G}=\emptyset, s^{\prime}=0, \mathcal{G}_{\text {min }}^{(i)}=\emptyset, r_{i+1}=0$, and $\mathcal{S}=\emptyset$. Then continue with step 2).
11) Let $\ell=i+1$. Return the list $\left(\mathcal{G}_{\text {min }}^{(0)}, \ldots, \mathcal{G}_{\text {min }}^{(\ell-1)}\right)$ and stop.

This is an algorithm which computes a list of deg-ordered homogeneous matrices $\left(\mathcal{G}_{\text {min }}^{(0)}, \ldots, \mathcal{G}_{\text {min }}^{(\ell-1)}\right)$ such that the P linear maps $\varphi_{j}: F_{j} \longrightarrow F_{j-1}$ given by $\mathcal{G}_{\text {min }}^{(j-1)}$ for $j=1, \ldots, \ell$ yield a minimal graded free resolution

$$
0 \longrightarrow F_{\ell} \xrightarrow{\varphi_{\ell}} F_{\ell-1} \xrightarrow{\varphi_{\ell-1}} \cdots \xrightarrow{\varphi_{3}} F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} M \longrightarrow 0
$$

9. Computing Minimal Resolutions Horizontally

1) Let σ be a term ordering on $\mathbb{T}^{n}\left(\epsilon_{1}^{(0)}, \ldots, \epsilon_{r_{0}}^{(0)}\right)$, let $\bar{P}=$ $P\left[\epsilon_{1}^{(0)}, \ldots, \epsilon_{r_{0}}^{(0)}\right]$ be graded by $\bar{W}=\binom{W \mid d_{01} \cdots}{d_{0 r_{0}}}$, let $r_{1}=\cdots=r_{n}=0$, let $B=\left\{v_{1}, \ldots, v_{s}\right\}$, let $\mathcal{G}=\emptyset$, and let $\mathcal{G}_{\text {min }}=\emptyset$.
2) Let d be the smallest degree with respect to Lex of an element of B. Form the subset B_{d} of B and remove it from B.
3) If $B_{d}=\emptyset$, continue with step 7). Otherwise, let i be the largest upper index of an indeterminate $\epsilon_{k}^{(j)}$ occuring in a polynomial of B_{d}. Let $f \in B_{d}$ be a polynomial which involves that indeterminate. Remove f from B_{d}.
4) Compute $f^{\prime}=\operatorname{HR}_{\sigma, \mathcal{G}}(f)$. If one of the indeterminates $\epsilon_{1}^{(i-1)}, \ldots, \epsilon_{r_{i-1}}^{(i-1)}$ occurs in f^{\prime}, append f^{\prime} to \mathcal{G}, append to B all S-polynomials of f^{\prime} and a polynomial g in \mathcal{G} such that $\mathrm{LT}_{\sigma}\left(f^{\prime}\right)$ and $\mathrm{LT}_{\sigma}(g)$ involve the same $\epsilon_{j}^{(i-1)}$, and continue with step 3).
5) If none of the indeterminates $\left\{\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right\}$ occurs in f^{\prime}, continue with step 3).
6) Increase r_{i+1} by one. Adjoin an indeterminate $\epsilon_{r_{i+1}}^{(i+1)}$ to \bar{P} and extend the grading to this new ring by defining $\operatorname{deg}_{\bar{W}}\left(\epsilon_{r_{i+1}}^{(i+1)}\right)=d$. Extend the term ordering σ to the new ring in such a way that the extension is an elimination ordering for $\left\{\epsilon_{1}^{(0)}, \ldots, \epsilon_{r_{i}}^{(i)}\right\}$. Compute the polynomial

$$
\bar{f}=f^{\prime}\left(x_{1}, \ldots, x_{n}, \epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}, 0, \ldots, 0\right)
$$

Append $g=\bar{f}-\epsilon_{r_{i+1}}^{(i+1)}$ to \mathcal{G} and \bar{f} to $\mathcal{G}_{\text {min }}$. For all $h \in B$ such that $\mathrm{LT}_{\sigma}(g)$ and $\mathrm{LT}_{\sigma}(h)$ involve the same indeterminate $\epsilon_{j}^{(i)}$, compute the S-polynomial of g and h and append it to B. Then continue with step 3).
7) If $B=\emptyset$, return the tuple $\mathcal{G}_{\text {min }}$ and stop. Otherwise, continue with step 2).

This is an algorithm which computes a deg-ordered tuple $\mathcal{G}_{\text {min }}$ of homogeneous polynomials in

$$
\bar{P}=P\left[\epsilon_{1}^{(0)}, \ldots, \epsilon_{r_{0}}^{(0)}, \ldots, \epsilon_{1}^{(\ell)}, \ldots, \epsilon_{r_{\ell}}^{(\ell)}\right]
$$

such that the homogeneous maps of graded free P-modules $\varphi_{i}: F_{i} \longrightarrow F_{i-1}$ defined by the elements of $\mathcal{G} \cap P\left[\epsilon_{1}^{(i)}, \ldots, \epsilon_{r_{i}}^{(i)}\right]$ yield a minimal graded free resolution

$$
0 \longrightarrow F_{\ell} \xrightarrow{\varphi_{\ell}} F_{\ell-1} \xrightarrow{\varphi_{\ell-1}} \cdots \xrightarrow{\varphi_{3}} F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} M \longrightarrow 0
$$

Summary and Conclusions

- For submodules of graded free modules the presentation of the idealization was described explicitly.
- We have determined the relation between the module and its idealization with respect to their Gröbner bases and with respect to minimal homogeneous sets of generators.
- We can idealize a homogeneous presentation and even a graded free resolution of the module.
- The computation of a minimal homogeneous presentation or a graded free resolution is then nothing but the computation of one Gröbner basis for the ideal representing the idealization.
- Classical strategies for computing resolutions correspond to different selection strategies for this Gröbner basis computation.
- The horizontal strategy corresponds to a particularly brief algorithm.
- All standard optimizations (avoiding unnecessary critical pairs, Hilbert driven, ...) can be applied.
- It is easy to analyze which operations have to be implemented efficiently to speed up the computation.

$$
\begin{array}{r}
\text { If you can't realize your ideal, } \\
\text { idealize the real. } \\
\text { (Marriage Counsel) }
\end{array}
$$

