previous next |
Rank |
Syntax |
Rank(M:MODULE):INT Rank(M:MAT):INT |
Summary |
rank of a module |
Description |
This function computes the rank of M. For a module M this is defined as the vector space dimension of the subspace generated by the generators of M over the quotient field of the base ring -- contrast this with the function NumComps which simply counts the number of components the module has. |
Example |
Use R ::= Q[x,y,z]; Rank(Module([x,y,z,0])); 1 ------------------------------- Rank(Module([[1,2,3],[2,4,6]])); 1 ------------------------------- Rank(Module([[1,2,3],[2,5,6]])); 2 ------------------------------- |