previous next |
Der |
Syntax |
Der(F,X:INDET):POLY where F is a polynomial or a rational function. |
Summary |
the derivative of a rational function |
Description |
This function returns the derivative of F with respect to the indeterminate X. |
Example |
Use R ::= Q[x,y]; Der(xy^2,x); y^2 ------------------------------- Define Jac(F) --> The Jacobian matrix for a polynomial. Return Mat([[Der(F,X) | X In Indets()]]); EndDefine; Jac(xy^2); Mat[ [y^2, 2xy] ] ------------------------------- Der(x/(x+y),x); y/(x^2 + 2xy + y^2) ------------------------------- |
See also: |