Aufgabe 59:

Sei K ein Körper, K(t) der Körper der rationalen Funktionen in der Unbestimmten t über K und $u=\frac{f}{g}$ mit teilerfremden $f,g\in K[t]\backslash K$. Zeigen Sie:

- a) Das Polynom $f(x) ug(x) \in K(u)[x]$ ist irreduzibel.
- b) Die Körpererweiterung K(t)/K(u) ist genau dann separabel, wenn $f' \neq 0$ oder $g' \neq 0$ gilt.

Beweis. Für den Beweis von a) sei h(x) = f(x) - ug(x). Wegen $u \notin K$ ist offensichtlich $h \neq 0$. Angenommen, h ist reduzibel über K(u). Dann ist h nach dem Satz von Gauss auch reduzibel über K[u] und es existieren Polynome $h_1, h_2, h_3 \in K[x]$, so dass gilt $h = (h_1u + h_2)h_3$ (man betrachtet h dabei als lineares Polynom in u). Es gilt nun $f = h_2h_3$ und $g = -h_1h_3$. Da f und g nach Vor. teilerfremd sind, folgt $h_3 \in K$ und damit ein Widerspruch zur Reduzibilität von h.

Zeige zunächst die Implikation " \Rightarrow " in b). Mit t ist auch dessen Minimalpolynom m_t separabel über K(u). Nun ist das Polynom h irreduzibel und hat die Nullstelle t in K(t), d.h. h ist skalares Vielfaches von m_t , also separabel. Nach 12.6 gilt dann $0 \neq h'(x) = f'(x) - ug'(x)$ und somit $f'(x) \neq 0$ oder $g'(x) \neq 0$.

Um die andere Implikation zu zeigen, sei $f'(x) \neq 0$ oder $g'(x) \neq 0$. Aus h' = 0 würde dann $\frac{f'(x)}{g'(x)} = \frac{f}{g} \in K$ folgen, d.h. f = kg für ein $k \in K$ im Widerspruch zur Teilerfremdheit von f und g. Also gilt $h' \neq 0$ und damit h separabel über K(u). Damit ist auch t separabel über K(u). Das Minimalpolynom m_t von t über K(u) besitzt dann $\deg(m_t) = [K(t) : K(u)]$ verschiedene Nullstellen in $\overline{K(t)}$. Also gibt es genau so viele K(u)-Einbettungen von K(t) in $\overline{K(t)}$. Mit 12.8 ergibt sich daraus die Separabilität von K(t)/K(u).