Abgabe: Mo, 26.06.2006, 12h

Algebra I Übungsblatt 12

Aufgabe 53:

Zeigen Sie, dass jede Gruppe G mit Ordnung |G| < 36 auflösbar ist.

Aufgabe 54:

Sei G eine abelsche Gruppe. Zeigen Sie:

- a) G ist genau dann endlich erzeugt, wenn es für ein $n \in \mathbb{N}$ einen surjektiven Gruppenhomomorphismus $\mathbb{Z}^n \longrightarrow G$ gibt.
- b) Jede Untergruppe von \mathbb{Z}^n für $n \in \mathbb{N}$ ist endlich erzeugt.
- c) Ist G endlich erzeugt, so ist auch jede Untergruppe von G endlich erzeugt.
- d) Die Torsionsgruppe $T(G) = \{g \in G \mid \operatorname{ord}_G(g) < \infty\}$ von G ist endlich, falls G endlich erzeugt ist.

Aufgabe 55:

Für eine abelsche Gruppe G und eine Primzahl p heißt die Untergruppe

$$T_p(G) = \{ g \in G \mid \operatorname{ord}_G(g) = p^n \text{ für ein } n \in \mathbb{N}_0 \}$$

von G die p-Torsionsgruppe von G.

Sei nun G eine abelsche Gruppe der Ordnung $p_1^{k_1} \cdots p_r^{k_r}$ mit paarweise verschiedenen Primzahlen p_1, \ldots, p_r und Zahlen $k_1, \ldots, k_r \in \mathbb{N}$. Zeigen Sie:

- a) Es gilt $G \cong T_{p_1}(G) \times \cdots \times T_{p_r}(G)$.
- b) Für i = 1, ..., r ist $T_{p_i}(G)$ die einzige p_i -Sylowuntergruppe von G.

Aufgabe 56:

Zeigen Sie:

- a) Jeder algebraisch abgeschlossene Körper ist unendlich.
- b) Der algebraische Abschluss von \mathbb{F}_p besteht genau aus allen Einheitswurzeln über \mathbb{F}_p und 0.