Gröbner Basis Cryptosystems

Martin Kreuzer **Fachbereich Mathematik** Universität Dortmund martin.kreuzer@uni-dortmund.de (joint work with Peter Ackermann, now AMB/Aachen) **Special Semester on Gröbner Bases** Workshop D1: Gröbner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics 3. Mai 2006

Outline of the Talk

- 1. Gröbner Bases for Modules over Free Monoid Rings
- 2. Gröbner Bases for Modules over Monoid Rings
- 3. Polly Cracker Cryptosystems
- 4. Gröbner Basis Cryptosystems
- 5. Examples of Gröbner Basis Cryptosystems
- 6. Efficiency and Security Considerations
- 7. Further Suggestions

1 – GB for Modules over Free Monoid Rings

Let's fix the notation!

- $\Sigma = \{x_1, \ldots, x_n\}$ finite alphabet
- Σ^* monoid of words (or terms)

K field

 $K[\Sigma^*]$ free monoid ring (= free associative algebra, non-commutative polynomial ring)

 σ term ordering on Σ^* , i.e. a total well-ordering such that $w_1 \leq_{\sigma} w_2$ implies $w_3 w_1 w_4 \leq_{\sigma} w_3 w_2 w_4$ for all $w_1, w_2, w_3, w_4 \in \Sigma^*$

Every non-commutative polynomial $f \in K[\Sigma^*]$ has a unique representation $f = c_1 w_1 + \dots + c_s w_s$ such that $c_i \in K \setminus \{0\}$ and $w_1 >_{\sigma} \cdots >_{\sigma} w_s$ in Σ^* . $LT_{\sigma}(f) = w_1$ leading term of f $LC_{\sigma}(f) = c_1$ leading coefficient of fGiven a right ideal $I \subseteq K[\Sigma^*]$, we let $LT_{\sigma}(I) = \langle LT_{\sigma}(f) \mid f \in I \setminus \{0\} \rangle_{\rho}$ be its right leading term ideal. A set $\{f_i \mid i \in \Lambda\}$ is called a (right) Gröbner basis of I if $LT_{\sigma}(I) = \langle LT_{\sigma}(f_i) \mid i \in \Lambda \rangle_{\rho}.$

Theorem 1.1 (Macaulay's Basis Theorem) The residue classes of the terms in

$$\mathcal{O}_{\sigma}(I) = \Sigma^* \setminus \mathrm{LT}_{\sigma}(I)$$

form a K-basis of $K[\Sigma^*]/I$.

For every $f \in K[\Sigma^*]$, there exists a unique normal form $NF_{\sigma,I}(f) \in \langle \mathcal{O}_{\sigma}(I) \rangle_K$ such that $f - NF_{\sigma,I}(f) \in I$.

The normal form can be computed by using the term rewriting system \xrightarrow{G} defined by a σ -Gröbner basis G of I.

A σ -Gröbner basis of I can be enumerated using the Buchberger procedure (Knuth-Bendix completion).

And What About Modules?

Everything generalizes easily to right submodules of free right modules over $K[\Sigma^*]$.

 $F_{\varrho} = \bigoplus_{i=1}^{r} e_i K[\Sigma^*]$ free right $K[\Sigma^*]$ -module with basis e_1, \ldots, e_r

A term in F_{ϱ} is of the form $e_i t$ with $t \in \Sigma^*$.

 $\mathbb{T}(F_{\varrho})$ is the set of all terms in F_{ϱ} .

A module term ordering on $\mathbb{T}(F_{\varrho})$ is a total well-ordering τ such that $t_1 \leq_{\tau} t_2$ implies $t_1 w \leq_{\tau} t_2 w$ for all $t_1, t_2 \in \mathbb{T}(F_{\varrho})$ and $w \in \Sigma^*$.

For every vector $v \in F_{\varrho}$ we define its leading term $LT_{\tau}(v)$ and its leading coefficient $LC_{\tau}(v)$ in the obvious way.

Given a right submodule $U \subseteq F_{\rho}$, we let

 $LT_{\tau}(U) = \langle LT_{\tau}(v) | v \in U \setminus \{0\} \rangle_{\varrho}$ be its (right) leading term module.

A set of non-zero vectors $\{v_i \mid i \in \Lambda\}$ is called a (right) τ -Gröbner basis of U if $LT_{\tau}(U) = \langle LT_{\tau}(v_i) \mid i \in \Lambda \rangle_{\varrho}$.

Theorem 1.2 (Macaulay Basis Theorem for Modules) The residue classes of the terms in $\mathcal{O}_{\tau}(U) = \mathbb{T}(F_{\varrho}) \setminus \mathrm{LT}_{\tau}(U)$ form a *K*-basis of the module F_{ϱ}/U .

Also for modules we can compute normal forms of vectors and have a Buchberger procedure to enumerate a Gröbner basis.

2 – GB for Modules over Monoid Rings

 $M = \Sigma^* / \sim_W$ finitely presented monoid, i.e. \sim_W is the equivalence relation generated by finitely many relations $w_i \sim w'_i$ with $w_i, w'_i \in \Sigma^*$ for $i = 1, \ldots, r$.

 $K[M] = K[\Sigma^*]/I_M$ monoid ring over M where I_M is the two-sided ideal $I_M = \langle w_1 - w'_1, \dots, w_r - w'_r \rangle$.

Assumption: There is a term ordering σ such that $w_i >_{\sigma} w'_i$ for $i = 1, \ldots, r$ and such that the term rewriting system \xrightarrow{W} is convergent (i.e. Noetherian/terminating and confluent).

So, $W = \{w_1 - w'_1, \dots, w_r - w'_r\}$ is a two-sided Gröbner basis of I_M . Then every $f \in K[\Sigma^*]$ can be effectively reduced via \xrightarrow{W} to a unique normal form $NF_{I_M}(f)$.

- Φ finite or countable infinite set
- \overline{F}_{ϱ} free right K[M]-module with basis $\{\overline{e}_i \mid i \in \Phi\}$
- $\overline{U} \subseteq \overline{F}_{\varrho}$ finitely generated right submodule
- τ module term ordering on $\mathbb{T}(F_{\varrho})$ that is compatible with σ (i.e. $w_1 <_{\sigma} w_2$ implies $e_i w_1 <_{\tau} e_i w_2$)

By representing every element of M using the normal form of the corresponding word in Σ^* , we can view τ as an ordering on

$$\mathbb{T}(\overline{F}_{\varrho}) = \{ \overline{e}_i m \mid i \in \Phi, \ m \in M \}$$

Problem: $\bar{e}_i w_1 \leq_{\tau} \bar{e}_i w_2$ does (in general) not imply $\bar{e}_1 m_1 m_3 \leq_{\tau} \bar{e}_i m_2 m_3$ for $m_1, m_2, m_3 \in M$ because reductions via \xrightarrow{W} may destroy the inequality for the representing words. **Definition 2.1** $v, w \in \overline{F}_{\varrho} \setminus \{0\}$

If there exist a term $\bar{e}_i m_1 \in \text{Supp}(w)$ and $m_2 \in M$ such that $\text{LT}_{\tau}(v) \circ m_2 \equiv \bar{e}_i m_1$, we say that v prefix reduces w to $w' = w - \text{LC}_{\tau}(v)^{-1} v m_2$. We write $w \xrightarrow{v}_{\pi} w'$.

Here \circ denotes the concatenation of the representing words and \equiv is the identity for words.

In this situation we have $LT_{\tau}(vm_2) = LT_{\tau}(v) \circ m_2$ a fortiori.

 $S \subseteq \overline{F}_{\varrho}$ is called prefix saturated if $vm \xrightarrow{S}_{\pi} 0$ in one step for all $v \in S$ and $m \in M$.

If S is prefix saturated then $v \stackrel{S}{\longleftrightarrow}_{\pi} 0$ for all $\langle S \rangle_{\varrho}$.

There exists a procedure for enumerating the prefix saturation of a set $S = \{v\}$.

Definition 2.2 A set G in a right submodule $\overline{U} \subseteq \overline{F}_{\varrho}$ is called a prefix Gröbner basis of \overline{U} if we have $u \stackrel{G}{\longleftrightarrow}_{\pi} 0$ for all $u \in \overline{U}$ and if $\stackrel{G}{\longrightarrow}$ is confluent.

One can formulate a Buchberger criterion for prefix Gröbner bases and a Buchberger procedure for enumerating a prefix Gröbner basis of a given right submodule of \overline{F}_{ϱ} .

Applications:

- submodule membership can be solved effectively
- the subgroup membership problem is equivalent to a right ideal membership problem in K[M]
- the conjugator search problem can be solved using a two-sided syzygy computation

3 – Polly Cracker Cryptosystems

In 1994, Fellows and Koblitz suggested the following cryptosystem. $P = K[x_1, \ldots, x_n]$ commutative polynomial ring $f_1, \ldots, f_s \in P$ polynomials having a common zero $(a_1, \ldots, a_n) \in K^n$ Public: f_1, \ldots, f_s Secret: (a_1,\ldots,a_n) Encryption: a plaintext unit $m \in K$ is encrypted as $w = m + f_1 g_1 + \dots + f_s g_s$ with $g_i \in P$ suitably chosen **Decryption:** evaluation yields $w(a_1, \ldots, a_n) = m$ Security: The attacker can break the cryptosystem if he can compute a Gröbner basis of $I = \langle f_1, \ldots, f_s \rangle$ because $m = NF_{\sigma,I}(w)$.

Ideals can be constructed which encode hard combinatorial problems so that it is believed to be difficult to compute their Gröbner bases.

Polly Cracker Is Under Attack!

- 1. Basic Linear Algebra Attack: The attacker knows $w = m + f_1g_1 + \dots + f_sg_s$. Consider the coefficients of g_1, \dots, g_s as unknowns. All coefficients of the non-constant terms in $f_1g_1 + \dots + f_sg_s$ are known. Thus we get a system of linear equations.
- 2. "Intelligent" Linear Algebra Attack: One may guess the terms t occurring in $\text{Supp}(g_i)$ because some of the terms in $t \cdot \text{Supp}(f_j)$ should occur in Supp(w) if there is not too much cancellation.

- 3. Differential Attack: Quotients of terms in Supp(w) allow conclusions about possible terms in $\text{Supp}(g_i)$.
- 4. Attack by Characteristic Terms: If there are terms which occur in just one f_i we can recognize multiples of these terms in w and compute the corresponding terms in g_i .
- 5. Attack by Truncated GB: In order to compute $NF_{\sigma,I}(w)$, it may be sufficient to find a partial Gröbner basis of I.

A more refined version of the cryptosystem suggested by L. Ly and called Polly 2 has been broken recently by R. Steinwandt using a side channel attack.

4 – Gröbner Basis Cryptosystems

 $M = \Sigma^* / \sim_W$ finitely presented monoid

 $\overline{F}_{\varrho} = \bigoplus_{i \in \Phi} \overline{e}_i K[M]$ free right module over the monoid ring

 σ, τ compatible term orderings

 $\overline{U} \subseteq \overline{F}_{\varrho}$ right submodule

Public: $\mathcal{O}_{\tau}(\overline{U}) = \mathbb{T}(\overline{F}_{\varrho}) \setminus LT_{\tau}(\overline{U})$ (or a subset thereof) and finitely many vectors $u_1, \ldots, u_s \in \overline{U}$

Secret: a prefix Gröbner basis G of \overline{U}

Encryption: a plaintext unit is of the form $m = \overline{e}_{\lambda_1} c_1 w_1 + \dots + \overline{e}_{\lambda_r} c_r w_r \in \langle \mathcal{O}_{\tau}(\overline{U}) \rangle_K$ with $\lambda_i \in \Phi, c_i \in K$, and $w_i \in M$. The plaintext unit m is encrypted as $w = m + \bar{u}_1 f_1 + \cdots + \bar{u}_s f_s$ with suitably chosen $f_i \in K[M]$.

Decryption: Using \xrightarrow{G} , compute $m = NF_{\sigma,\overline{U}}(w)$.

Security: • The attacker can break the cryptosystem if he can compute a Gröbner basis of $\langle \bar{u}_1, \ldots, \bar{u}_s \rangle_{\varrho}$.

• The advantage of using modules is that the action of M on the set $\{\bar{e}_i \mid i \in \Phi\}$ can encode hard combinatorial or number theoretic problems.

• The free module \overline{F}_{ϱ} is not required to be finitely generated. Any concrete calculation will involve only finitely many components.

5 – Examples of Gröbner Basis Cryptosystems

Example 5.1 (Polly Cracker Cryptosystems) If we use the monoid $M = \mathbb{N}^n$, the free module $\overline{F}_{\varrho} = K[M] = K[x_1, \dots, x_n]$, and the submodule $\overline{U} = \langle x_1 - a_1, \dots, x_n - a_n \rangle$, we obtain the original Polly Cracker Cryptosystem.

The set $\mathcal{O}_{\tau}(\overline{U})$ is equal to $\{1\}$. Thus a plaintext unit is just an element of K.

The secret Gröbner basis is $\{x_1 - a_1, \ldots, x_n - a_n\}$.

The decryption yields the same result because $NF_{\tau,\overline{U}}(w) = w(a_1,\ldots,a_n).$

Example 5.2 $K = \mathbb{F}_2$ and $M = \mathbb{N}^2$ yields $K[M] = \mathbb{F}_2[x, y]$ $p, q \gg 0$ distinct prime numbers, n = pq, and $\Pi = (\mathbb{Z}/n\mathbb{Z})^{\times}$ $\overline{F}_{\varrho} = \bigoplus_{i=0}^{n-1} e_i K[x, y]$ and $\tau = \mathsf{DegRevLexPos}$ Choose $\varepsilon \in (\mathbb{Z}/(p-1)(q-1)\mathbb{Z})^*$ and compute $d = \varepsilon^{-1}$.

Public: \overline{F}_{ϱ} (and thus n), $\mathcal{O}_{\tau}(\overline{U}) = \{e_0, \ldots, e_{n-1}\}$, the number ε , and the vectors

$$\{u_1, \dots, u_s\} = \{\bar{e}_i x - e_{i^{\varepsilon} \mod n}, e_i x y - e_i \mid i = 0, \dots, n-1\}$$

Secret: The secret key consists of the primes p, q and the number d. Equivalently, it is the τ -Gröbner basis

$$G = \{u_1, \dots, u_s\} \cup \{e_i y - e_{i^d \mod n} \mid i = 0, \dots, n-1\} \quad \text{of} \quad \overline{U} = \langle G \rangle$$

Encryption: A plaintext unit is a vector $e_m \in \mathcal{O}_{\tau}(\overline{U})$. To encrypt it, we form

$$w = e_m + (e_m xy - e_m) - (e_m x - e_{m^{\varepsilon} \mod n})y = e_{m^{\varepsilon} \mod n}y$$

Decryption: Compute $NF_{\tau,\overline{U}}(w) = e_{m^{\varepsilon d} \mod n} = e_m$.

Security: The attacker can compute the Gröbner basis if and only if he can factor n = pq and find d.

This is nothing but the GB version of the **RSA cryptosystem**!

Example 5.3 $K = \mathbb{F}_2, M = \mathbb{N}$, and $K[M] = \mathbb{F}_2[x]$ $p \gg 0$ prime number, g generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ $\overline{F}_{\varrho} = \bigoplus_{i=1}^{p-1} \varepsilon_i K[x] \oplus \bigoplus_{j=1}^{p-1} e_j K[x]$ and $\tau = \text{DegPos with } \varepsilon_i > e_j$ Choose a number $a \in \{1, \ldots, p-1\}$ and compute $b = g^a \mod p$.

Public: \overline{F}_{ϱ} (and thus p), $\mathcal{O}_{\tau}(\overline{U}) = \{e_1, \ldots, e_{p-1}\}$, the number b, and the vectors

$$\{u_1, \dots, u_s\} = \{\varepsilon_1 - e_1\} \cup \{\varepsilon_i x - \varepsilon_{gi}, e_j x - e_{bj} \mid i, j = 1, \dots, p-1\}$$

where all indices are computed modulo p.

Secret: The number a, or equivalently the τ -Gröbner basis

$$G = \{u_1, \dots, u_s\} \cup \{\varepsilon_i - e_{i^a} \mid i = 1, \dots, p-1\} \quad \text{of} \quad \overline{U} = \langle G \rangle$$

Encryption: A plaintext unit is of the form $e_1 + e_m$ with $m \in \{1, \ldots, p-1\}$. Use the following variant of the GB cryptosystem: choose a random number k, form $(e_1 + e_m)x^k$, and send $w = \varepsilon_{g^k} + e_{mb^k} \in (\varepsilon_1 + e_m)x^k + \langle u_1, \ldots, u_s \rangle_{\varrho}$. Decryption: First compute $NF_{\tau,\overline{U}} = e_{b^k} + e_{mb^k}$. Since $e_{b^k} + e_{mb^k} \xleftarrow{G} (e_1 + e_m)x^k$, we have to "divide" this vector by x^k . To this end, it suffices to compute $m = (mb^k)/b^k$ and to form e_m . Security: This cryptosystem can be broken if the attacker is able to compute the discrete logarithm a of $b = g^a$ or k of g^k . In the GB

version, the reduction $\varepsilon_{g^k} \xrightarrow{u_i} \cdots \xrightarrow{u_j} x^k \varepsilon_1 \xrightarrow{u_1} x^k e_1$ would take $k \gg 0$ steps. If one knows a, one can get rid of ε_{g^k} by using just one reduction step $\varepsilon_{q^k} \longrightarrow e_{q^{ka}} = e_{b^k}$.

This is nothing but the GB version of the **ElGamal** cryptosystem!

Further Examples of GB Cryptosystems

- Le van Ly's cryptosystem Polly 2 is a variant using commutative polynomials
- Tapan Rai's cryptosystem uses two-sided Gröbner bases of ideals in $K[\Sigma^*]$, but is otherwise identical.
- Also the braid group based cryptosystems of Ko-Lee *et al.* and of Anshel-Anshel-Goldfeld can be viewed as Gröbner basis cryptosystems, where the group elements act on the standard basis vectors by conjugation on the index.

6 – Efficiency and Security Considerations

Efficiency. One difficulty in constructing an efficient example of a GB cryptosystem is the possibility of exponential support growth during the normal form computation. Possible countermeasures include:

• many generators are binomials

• determine individual coefficients of the normal form by applying suitable linear functionals

Linear Algebra Attacks. The various types of linear algebra attacks can be rendered infeasible in the following ways:

• use a module of very large rank

• use a large set $\mathcal{O}_{\tau}(\overline{U})$ to make the ciphertext statistically similar to the plaintext

• over a (not too big) group ring many products $(e_i t)t'$ will give the same term; the corresponding coefficients cannot be recovered

• in a group ring every term is a multiple of any other term

Chosen Ciphertext Attacks. In the proposed system the receiver cannot detect invalid cyphertexts. Moreover, the decryption is K-linear. Using a hash function we can overcome this problem:

- append suitable random values to the message ("message padding")
- compute a hash value of the padded message
- transmit the cyphertext of the message, the ciphertext of the padding, and the hash value

7 – Further Suggestions

Increasing the Security.

• The Gröbner basis of the module $\langle u_1, \ldots, u_s \rangle_{\varrho}$ generated by the public vectors need not be finite. A truncated GB computation should yield no "simple" elements in the module.

• If we work with two-sided ideals and modules, the linear algebra attack will yield a system of quadratic equations for the unknown coefficients.

• We should try to give a security certificate: if you can solve this instance, then you can also solve the following (supposedly difficult) computational problem ...

Generating New Hard Instances.

• Find monoid or group rings having ideals whose Gröbner bases are difficult to compute.

• Encode a hard instance of an action of a group on a set by letting the group act on the standard basis vectors of a free module

• Use ideals or submodules for which $\mathcal{O}_{\tau}(\overline{U})$ is "large enough" to allow the encryption of sizable plaintext units. This decreases the message expansion ratio.

• Manufacture the encryption procedure such that the likelihood of cancellations in the computation of $w = m + u_1 f_1 + \cdots + u_s f_s$ is maximized. Use finite groups of "medium size".

References

- 1. P. Ackermann and M. Kreuzer, Gröbner basis cryptosystems, AAECC (2006), available "online first"
- Boo Barkee et al., Why you cannot even hope to use Gröbner bases in public key cryptography: an open letter to a scientist who failed and a challenge to those who have not yet failed, J. Symb. Comput. 18 (1994), 497–501
- 3. M. Fellows and N. Koblitz, Combinatorial cryptosystems galore!, Contemp. Math. 168 (1994), 51–61
- 4. L. Ly, Polly two a new algebraic polynomial-based public-key scheme, AAECC (2006), to appear

- 5. K. Madlener and B. Reinert, String rewriting and Gröbner bases

 a general approach to monoid and group rings, in: Progress
 Comp. Sci. Appl. Logic 15, Birkäuser 1998, 127–150
- 6. T. Mora, Gröbner bases in non-commutative algebras, in: Lect. Notes Comp. Sci. 358, Springer 1989, 150–161

Thank You for Your Attention!