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Introduction

If A is a Banach algebra and x varies in A, what can be said about the
spectrum function x 7→ Sp x? Is that function continuous or analytic in some
sense? How behave related functions like the spectral radius function x 7→
ρ(x) or the spectral diameter function x 7→ δ(x)? Generally, the spectrum
function does not have to be continuous, but one can relate it to so-called
subharmonic functions; these are upper semicontinuous functions u from a
domain D of C into [−∞,∞) satisfying a submean inequality

u(z) ≤
1

2π

∫ 2π

0

u(z + reit)dt (D(z, r) ⊆ D).

For instance, if f : D → A is an analytic function, then ρ(f) and log ρ(f)
are subharmonic functions. Subharmonic functions have a great number of
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beautiful properties, e. g. there is a maximum principle and a Liouville the-
orem for subharmonic functions. Using these we can prove some interesting
results in Banach algebra theory very nicely.

We define subharmonic functions and develop their most important prop-
erties in chapter 1. In chapter 2 we discuss continuous and discontinuous
behaviour of the spectrum and relate it to subharmonic functions. We then
(chapter 3) give some applications where the subharmonicity of the spectrum
is used to prove some results in Banach algebra theory. There is an appendix
that deals with the radical of a Banach algebra and some basic facts from
representation theory as neeeded in some of the applications in chapter 3.

The reader should have some general background in functional analysis.
The basic facts needed about Banach algebras and spectral theory are gath-
ered in section 2.1. I would like to thank Dr G R Allan for setting this very
interesting essay and for his great support during the last months.

1 Subharmonic functions

We develop the theory of subharmonic functions on the complex domain
based on the excellent book [5]. For a more general introduction to subhar-
monic functions see for instance [3].

1.1 Upper semicontinuous functions

As part of their definition, subharmonic functions are going to be upper
semicontinuous, so we take a brief look at upper semicontinuous function in
the abstract.

Definition 1.1.1 Let (X, d) be a metric space. A function u : X →
[−∞,∞) is called upper semicontinuous if, for every c ∈ R, the set
{x ∈ X : u(x) < c} is an open subset in X.

It is easy to check that u is upper semicontinuous if and only if

u(x) ≥ lim sup
y→x

u(y) := inf
ε→0

sup
d(x,y)<ε

u(y) (x ∈ X).

It is also clear from the defintion that every upper semicontinuous function
is a Borel function.

Proposition 1.1.2 (a) If u1, u2 and u are upper semicontinuous functions
and λ ≥ 0, then u1 +u2, λu and max(u1, u2) are upper semicontinuous
functions.
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(b) If {ui} is a collection of upper semicontinuous functions, then inf i ui is
upper semicontinuous. In particular, if u1 ≥ u2 ≥ u3 . . . then u(x) :=
lim un(x) is upper semicontinuous.

Proof. (a) Let c ∈ R and U = {x : u1(x) + u2(x) < c}. To show that U
is open, let x0 ∈ U and ε = c−u1(x0)+u2(x0) > 0. Then U1 = {x : u1(x) <
u1(x0) + ε

2
} and U2 = {x : u2(x) < u2(x0) + ε

2
} are neighbourhoods of x0,

hence U1 ∩ U2 is a neighbourhood of x0 contained in U .
Next, {x : λu(x) < c} = {x : u(x) < c

λ
} for all λ > 0 and c ∈ R, hence

λu is upper semicontinuous if λ > 0 and trivially if λ = 0.
Furthermore, {x : max(u1(x), u2(x)) < c} = {x : u1(x) < c} ∩ {x :

u2(x) < c} is open for every c ∈ R.
(b) If c ∈ R, then {x : inf i ui(x) < c} = ∪i{x : ui(x) < c} is open. �

We shall make frequent use of the following basic compactness theorem.

Theorem 1.1.3 If X is compact and u is an upper semicontinuous function
on X, then u is bounded above on X and u attains its upper bound.

Proof. The sets ({x : u(x) < n})n≥1 form an open cover of X, so have a
finite subcover. Hence u is bounded above on X. Let M = supX u. Then
the open sets ({x : u(x) < M − 1

n
})n≥1 cannot cover X, because they have

no finite subcover. Hence u(x) = M for at least one x ∈ X. �

Now another preservation theorem can be stated.

Proposition 1.1.4 Let X, T be metric spaces, T be compact and v : X×T →
[−∞,∞) be an upper semicontinuous function. Then u : X → [−∞,∞),
u(x) := supt∈T v(x, t) is upper semicontinuous.

Proof. By the preceding theorem u(x) < ∞ for all x ∈ X. To prove
upper semicontinuity, let c ∈ R and U = {x ∈ X : u(x) < c}. If x0 ∈ U ,
choose c′ such that u(x0) < c′ < c. Then v(x0, t) < c′ for each t ∈ T , hence
by upper semicontinuity of v there are neighbourhoods Mt of x0 and Nt of t
such that v < c′ on Mt ×Nt. Now T ⊆ Nt1 ∪· · ·∪Ntn for some t1, . . . , tn ∈ T
by compactness, hence M = Mt1 ∩ · · · ∩Mtn is a neighbourhood of x0 and
we have u(x) = supt∈T v(x, t) ≤ c′ < c for x ∈ M . This shows that M ⊆ U
and therefore that U is open in X. �

The other result that we shall need is an approximation theorem.
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Theorem 1.1.5 If u : X → [−∞,∞) is upper semicontinuous and bounded
above on X, then there is a decreasing sequence of uniformly continuous
functions (fn) on X such that for every x in X, fn(x) ↓ u(x).

Proof. We can suppose that u is not identically −∞ (otherwise just take
fn ≡ −n). For n ≥ 1, define fn : X → R by

fn(x) = sup
y∈X

{u(y)− nd(x, y)} (x ∈ X)

where d is the metric on X. Since |u(y) − nd(x, y) − (u(y) − nd(x′, y))| =
n|d(x, y) − d(x′, y)| ≤ nd(x, x′), for each n, we have

|fn(x) − fn(x′)| ≤ nd(x, x′) (x, x′ ∈ X),

so fn is uniformly continuous on X. Clearly also f1 ≥ f2 ≥ · · · ≥ u, and so
in particular limn→∞ fn ≥ u. On the other hand, writing B(x, r) for the ball
{y ∈ X : d(x, y) < r}, we have

fn(x) ≤ max( sup
B(x,r)

u, sup
X
u− nr) (x ∈ X, r > 0),

so that
lim

n→∞
fn(x) ≤ sup

B(x,r)

u (x ∈ X, r > 0).

As u is upper semicontinuous, letting r → 0 gives limn→∞ fn ≤ u. �

1.2 Subharmonic functions

In analogy to convex functions on R we shall define subharmonic functions
by a submean property (but here we have to assume upper semicontinuity
as well).

Definition 1.2.1 If D is a domain (a connected open subset) of C, a func-
tion u : D → [−∞,∞) is subharmonic if u is upper semicontinuous and, for
every closed disk D(z, r) ⊆ D, we have the submean inequality

u(z) ≤
1

2π

∫ 2π

0

u(z + reit)dt.

By Theorem 1.1.3 u is bounded above on ∂D(z, r), so the integral is
well-defined as an element of [−∞,∞).

The usual definition assumes just the formally weaker (but equivalent)
condition that the submean inequality holds just for all sufficiently small
closed discs included in D. We do not need to use that formulation.
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Example 1.2.2 If f : D → C is holomorphic, then both |f | and log |f | are
subharmonic on D.

Proof. Both functions are continuous, so certainly upper semicontinuous.
If D(z, r) ⊆ D then by Cauchy’s integral formula

f(z) =
1

2π

∫ 2π

0

f(z + reit)dt, and so |f(z)| ≤
1

2π

∫ 2π

0

|f(z + reit)|dt.

Thus |f | is subharmonic on D.
For log |f | note first that the result is trivial if f(z) = 0. If f(z) 6= 0, we

assume w.l.o.g. z = 0 and apply the classical Jensen’s formula (see e. g. [7],
Theorem 15.18):

Let f be holomorphic on D(0, R), let f(0) 6= 0 and 0 < r < R. Let the
zeros of f in D(0, r) be α1, . . . , αN , repeated according to multiplicity. Then,

log |f(0)| =
1

2π

∫ 2π

0

log |f(reit)|dt− log |
rN

α1 · · ·αN
|.

�

Proposition 1.2.3 (a) If u1, u2 and u are subharmonic functions and
λ ≥ 0, then u1 + u2, λu and max(u1, u2) are subharmonic.

(b) If (un) is a decreasing sequence of subharmonic functions, then u(z) :=
lim un(z) is subharmonic.

(c) If (ui) is a familiy of subharmonic functions and if u(z) := supi ui(z)
is upper semicontinuous, then u is subharmonic.

Proof. (a) These functions are upper semicontinuous by Proposition 1.1.2
(a) and one easily checks the submean inequality.

(b) By Proposition 1.1.2 (b) u is upper semicontinuous. Also, if D(a, r) ⊆
D, then, for each n,

u(a) ≤ un(a) ≤
1

2π

∫ 2π

0

un(a+ reit)dt.

Now the monotone convergence theorem (note that u1 is bounded above by
Theorem 1.1.3) yields the desired result.

(c) By hypothesis u is upper semicontinuous and for each i we have

ui(a) ≤
1

2π

∫ 2π

0

ui(a+ reit)dt ≤
1

2π

∫ 2π

0

u(a+ reit)dt,
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hence the result follows by taking the suprenum over i. �

Now combining Proposition 1.1.4 with Proposition 1.2.3 (c) we immedi-
ately get the following result.

Proposition 1.2.4 Let D be a domain in C, T be a compact metric space
and let v : D × T → [−∞,∞) be upper semicontinuous such that v(·, t)
is subharmonic on D for each t ∈ T , then u : D → [−∞,∞), u(z) :=
supt∈T v(z, t) is subharmonic. �

New examples of subharmonic functions are generated by composition
with increasing convex functions.

Proposition 1.2.5 Let −∞ ≤ a < b ≤ ∞, let u : D → [a, b) be a sub-
harmonic function on a domain D and let ψ : (a, b) → R be an increas-
ing convex function. Then ψ ◦ u is subharmonic on D, where we define
ψ(a) = limt→a ψ(t).

Proof. Choose (an)n≥1 ∈ (a, b) with an ↓ a and for each n set un =
max(u, an), so un is subharmonic. Since ψ is continuous and increasing,
ψ ◦ un is upper semicontinuous on D. Also if D(z, r) ⊆ D then

ψ ◦ un(z) ≤ ψ

(
1

2π

∫ 2π

0

un(z + reit)dt

)
≤

1

2π

∫ 2π

0

ψ ◦ un(z + reit)dt,

the second inequality coming from Jensen’s inequality applied to the measure
dt/2π on [0, 2π). Hence ψ ◦ un is subharmonic on U . Since ψ ◦ un ↓ ψ ◦ u as
n → ∞, it follows from Proposition 1.2.3 (b) that ψ ◦ u is subharmonic on
U . �

Corollary 1.2.6 If u is subharmonic on a domain D of C, then so is exp u.
�

For example, applying this result to u := α log |f |, where f is holomorphic
and α > 0, we deduce that |f |α is subharmonic.

1.3 The maximum principle and some consequences

The maximum principle is our first important property of subharmonic func-
tions. In the rest of this chapter we shall use this principle frequently.
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Theorem 1.3.1 (maximum principle for subharmonic functions)
Let u : D → [−∞,∞) be a subharmonic function on a domain D of C. If
there exists a ∈ D such that u(z) ≤ u(a) for all z ∈ D, then u(z) = u(a) for
all z ∈ D.

Proof. Let E = {z ∈ D : u(z) = u(a)} 6= ∅, then E is closed since u is
upper semicontinuous. If we show that E is open, then by connectedness of
D it follows E = D as required.

Now let z ∈ E and r > 0 such that D(z, r) ⊆ D, then for ρ < r,

u(a) = u(z) ≤
1

2π

∫ 2π

0

u(z + ρeit)dt,

but since u(z + ρeit) ≤ u(a) for each t, u must be equal to u(a) almost
everywhere on ∂D(z, ρ) and by upper semicontinuity of u in fact everywhere,
because {w ∈ ∂D(z, ρ) : u(w) < u(a)} is open in ∂D(z, ρ). Hence u ≡ u(a)
on D(z, r) and E is indeed open. �

For the next the result, we write ∂∞S for the boundary of a subset S ⊆ C

relative to the Riemann sphere C∞, hence ∂∞S = ∂S if S is bounded and
∂∞S = ∂S ∪ {∞} if S is unbounded.

Corollary 1.3.2 Let u : D → [−∞,∞) be a subharmonic function on a
domain D and suppose there exists M such that lim supz→a u(z) ≤ M for
a ∈ ∂∞D. Then u(z) ≤M for all z ∈ D.

Proof. We extend u to ∂∞D by defining u(a) = lim supz→a u(z), a ∈ ∂∞D.
Then u is upper semicontinuous on D

∞
= D∪ ∂∞D which is compact, so by

Theorem 1.1.3 u attains a maximum at some z ∈ D
∞

. If z ∈ ∂∞D, then by
assumption u(z) ≤ M , so u ≤ M on D. On the other hand, if z ∈ D, then
by the maximum principle u is constant on D, hence on D

∞
, and so again

u ≤M on D. �

Corollary 1.3.3 If u : D → [−∞,∞) is a subharmonic function on a do-
main D, then for any z ∈ D, we have

u(z) = lim sup
w→z,w 6=z

u(w).

Proof. By upper semicontinuity we have u(z) ≥ lim supw→z,w 6=z u(w).
Suppose u(z) > lim supw→z,w 6=z u(w) = infε>0 sup0<|z−w|<ε u(w), then there
exists ε > 0 such that u(z) > u(w) for 0 < |z − w| < ε. But then by the
maximum principle u is constant on D(z, ε) which is a contradiction. �
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It is sometimes also of interest to know under what conditions log u is
subharmonic.

Theorem 1.3.4 Let D be a domain of C and u : D → [0,∞) be a function
such that u|ep| is subharmonic for every polynomial p, then log u is subhar-
monic.

Proof. If we take p = 0, we see that u is subharmonic and therefore upper
semicontinuous, so that log u is upper semicontinuous.

To prove the submean inequality, let D(z, r) ⊆ D and T := ∂D(z, r). By
Theorem 1.1.5 we can choose continuous functions fn : T → R such that
fn ↓ log u on T . By the Stone-Weierstrass theorem, for each n ≥ 1, we can
find a polynomial pn such that

0 ≤ Re pn − fn ≤ 1/n on T.

Then we have

lim sup
z→a

u(z)|e−pn(z)| ≤ efn(a)e−Re pn(a) ≤ 1 (a ∈ T ).

Since u|e−pn| is assumed subharmonic, it follows from the maximum principle
that u|e−pn| ≤ 1 on D(z, r), so in particular log u(z) ≤ Re pn(z). Now

pn(z) = 1
2π

∫ 2π

0
pn(z + reit)dt by Cauchy’s formula, so we have

log u(z) ≤ Re pn(z) =
1

2π

∫ 2π

0

Re pn(z + reit)dt

≤
1

2π

∫ 2π

0

fn(z + reit)dt+
1

n
.

Letting n→ ∞ and applying the monotone convergence theorem, we deduce
that

log u(z) ≤
1

2π

∫ 2π

0

log u(z + reit)dt

as desired. �

1.4 Integrability

Although subharmonic functions are allowed to take the value −∞, we shall
see that non-constant subharmonic functions are almost everywhere finite.

We shall use the notion A for two-dimensional Lebesgue-measure.
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Theorem 1.4.1 (integrability theorem) Let u be a subharmonic func-
tion on a domain D of C being not identically −∞. Then u is locally inte-
grable on D, i. e.

∫
K
|u|dA <∞ for each compact subset K of D.

Proof. Let

A = {z ∈ D : ∃r > 0 s. t.

∫

D(z,r)

|u|dA <∞}

and B = D \ A. We show that A and B are open and that u ≡ −∞ on B.
Then we have A = D and we use a simple compactness argument to finish
the proof.

Now let z ∈ A and r > 0 such that
∫

D(z,r)
|u|dA < ∞. We show that

D(z, r) ⊆ A. If a ∈ D(z, r), let s := r− |z− a| > 0 so that D(a, s) ⊆ D(z, r)
and therefore

∫
D(a,s)

|u|dA ≤
∫

D(z,r)
|u|dA < ∞, hence a ∈ A. Thus A is

open.
If z ∈ B, choose r > 0 such thatD(z, 2r) ⊆ D. We show thatD(z, r) ⊆ B

and that u ≡ −∞ on D(z, r). If a ∈ D(z, r), let s := r + |z − a| so that
D(a, s) ⊇ D(z, r). Now

∫
D(a,s)

|u|dA ≥
∫

D(z,r)
|u|dA = ∞ and u is bounded

above on D(a, s), so we have
∫

D(a,s)
udA = −∞. But u satisfies the submean

inequality

u(a) ≤
1

2π

∫ 2π

0

u(a+ ρeit)dt (0 ≤ ρ ≤ s),

so by multiplying with 2πρ and integrating we get
∫ s

0

2πρu(a)dρ ≤

∫ s

0

ρ

∫ 2π

0

u(a+ ρeit)dt =

∫

D(a,s)

udA = −∞,

so that u(a) = −∞. Hence u ≡ −∞ on D(z, r), so we have D(z, r) ⊆ B.
Thus B is open and u ≡ −∞ on B as required. �

Corollary 1.4.2 Let u be a subharmonic function on a domain D of C being
not identically −∞. Then

E := {z ∈ D : u(z) = −∞}

is a set of Lebesgue measure zero.

Proof. Let (Kn)n≥1 be compact sets with ∪nKn = D. For each n we have∫
Kn

|u|dA <∞, so E ∩Kn has measure zero. Since E = ∪n(E ∩Kn), it too
has measure zero. �

The set E above is also small in other ways. For example, E is totally
disconnected, see e. g. [3], chapter 5.
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1.5 Radial subharmonic functions

Before the next proof, note that harmonic functions are also subharmonic
functions, because they are continuous and satisfy the mean equality h(z) =
1
2π

∫ 2π

0
h(z + reit)dt.

Theorem 1.5.1 Let v : D(0, ρ) → [−∞,∞) be a subharmonic function
being not identically −∞ which is radial, that is v(z) = v(|z|) for all z.
Then v(r) is an increasing convex function of log r (0 < r < ρ).

Proof. Let r1, r2 ∈ (0, ρ) with r1 < r2 be given. The maximum principle
applied to v on D(0, r2) yields

v(r1) ≤ sup
∂D(0,r2)

v = v(r2),

hence v(r) is increasing.
Now v is locally integrable by Theorem 1.4.1, so it follows that v(r) >

−∞ for r > 0. We choose constants α, β such that α + β log r = v(r) for
r = r1, r2. Now − log |z| is harmonic, so v(z) − α− β log |z| is subharmonic,
hence applying the maximum principle on {z : r1 < |z| < r2}, we get

v(r) ≤ α + β log r (r1 < r < r2).

Hence, if 0 ≤ λ ≤ 1 and log r = (1 − λ) log r1 + λ log r2, then

v(r) ≤ α+ β log r

= (1 − λ)(α + β log r1) + λ(α + β log r2)

= (1 − λ)v(r1) + λv(r2),

hence v(r) is a convex function of log r. �

Remark: log r 7→ f(r) is a convex function if and only if t 7→ f(et) is
convex. For 0 ≤ λ ≤ 1 we then have

f(sλt1−λ) ≤ λf(s) + (1 − λ)f(t).

In particular, if f = log g for a non-negative function g, then

g(sλt1−λ) ≤ g(s)λg(t)1−λ.

Corollary 1.5.2 (Hadamard’s three circles theorem) Let u be a sub-
harmonic function on D(0, ρ) being not identically −∞ and let Mu(r) :=
sup|z|=r u(z) (0 < r < ρ). Then Mu(r) is an increasing convex function of
log r.
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Proof. For 0 < r < ρ, we have Mu(r) = v(r), where v(z) =
supt∈[0,2π] u(ze

it). Now v is subharmonic by Proposition 1.2.4 and obviously
radial, so the result follows from the preceding theorem. �

Corollary 1.5.3 (Liouville’s theorem for subharmonic functions)
Let u : C → [−∞,∞) be a subharmonic function and suppose that
lim infr→∞Mu(r)/ log r = 0. Then u is constant.

Proof. If u is not identically −∞, then we have M(es) > −∞ for some
s ∈ R. By the preceding corollary M(et) is increasing and convex, hence for
s < t we have

0 ≤
M(et) −M(es)

t− s
≤ lim

t→∞

M(et) −M(es)

t− s
= lim

t→∞

M(et)

t
= lim

r→∞

M(r)

log r
= 0.

Hence M(et) = M(es) for s < t. Therefore u has a maximum inside D(0, et),
so the maximum principle forces u to be constant on D(0, et) for every t > 0.
Thus u is constant on C. �

The following corollary is immediate.

Corollary 1.5.4 Let u : C → [−∞,∞) be subharmonic and bounded above.
Then u is constant. �

2 Analytic properties of the spectrum

In this chapter we discuss the behaviour of the spectrum function x 7→ Sp x.
We give examples of continuity and non-continuity and we further develop
the relations of the spectral radius and the spectral diameter to subharmonic
functions. In this presentation we follow [2], section 3.4.

2.1 Prerequisites: Banach algebras and the spectrum

A Banach algebra is a complex Banach space (A, ‖ · ‖) on which is defined an
associative bilinear multiplication satisfying ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.
Moreover, we always assume that A has a multiplicative identity 1 with
‖1‖ = 1.

We shall write G(A) for the set of all invertible elements of A, i. e. all
elements x ∈ A such that yx = xy = 1 for some y ∈ A. Given an element
x ∈ A, its spectrum is defined by

Sp x := {λ ∈ C : λ1 − x /∈ G(A)}
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and its spectral radius by

ρ(x) := sup{|λ| : λ ∈ Sp x}.

We remind of some important facts:

Theorem 2.1.1 Let A be a Banach algebra. We have:

(a) If x ∈ A and ‖x‖ < 1, then 1 + x ∈ G(A).

(b) G(A) is open in A.

(c) Sp x is a non-empty compact set of C, x ∈ A.

(d) lim ‖xn‖1/n = inf ‖xn‖1/n = ρ(x); in particular, ρ(x) ≤ ‖x‖, x ∈ A.

(e) If x, y ∈ A such that xy = yx, then ρ(x + y) ≤ ρ(x) + ρ(y) and
ρ(xy) ≤ ρ(x)ρ(y).

Proof. See e. g. [6], Theorems 10.7, 10.12, 10.13 and 11.23. �

Lemma 2.1.2 Let A be a Banach algebra and let x ∈ A. Suppose (xn) is a
sequence of invertible elements converging to x such that (x−1

n ) is a bounded
sequence. Then x is invertible.

Proof. We have ‖1 − xx−1
n ‖ = ‖(xn − x)x−1

n ‖ ≤ ‖xn − x‖‖x−1
n ‖ → 0 by

assumption, so that xx−1
n is invertible for large n. Hence x has a right inverse

and similarly it can be proven that x has a left inverse. �

If A,B are Banach algebras (or just algebras), a linear operator T : A→
B is called homomorphism if we have T1 = 1 and T (xy) = TxTy, for
x, y ∈ A.

For the next theorem, we consider the algebra O(U) of holomorphic func-
tions on an open set U ⊆ C with their (Fréchet-)topology of locally uniform
convergence. We write R(U) for the subalgebra of O(U) consisting of all
rational functions having their poles in C \ U .

Theorem 2.1.3 (holomorphic functional calculus) Let A be a Banach
algebra, x ∈ A and U ⊆ C an open set containing Sp x. Then there is a
unique continuous homomorphism Θx : O(U) → A such that Θx(I) = x
(where I(λ) := λ). Moreover:

(a) If γ is an arbitrary cycle that encloses Sp x in U , we have

Θx(f) =
1

2πi

∫

γ

f(λ)(λ1− x)−1dλ.

12



(b) For r ∈ R(U), we have Θx(r) = r(x).

(c) Sp Θx(f) = f(Spx), for all f ∈ O(U).

With respect to (b) we shall write f(x) for Θx(f), for all f ∈ O(U).

Proof. See e. g. [2], Theorem 3.3.3. �

The following application of the holomorphic functional calculus will be
useful quite often.

Proposition 2.1.4 Let A be a Banach algebra. Suppose that x ∈ A and that
α /∈ Sp x. Then we have

1/ dist(α, Spx) = ρ((α1 − x)−1).

Proof. Let U ⊇ Sp x be open such that α /∈ U . Then f(λ) = 1/(α− λ) is
holomorphic on U . So we have Sp(α1 − x)−1 = {1/(α − λ) : λ ∈ Sp x} by
Theorem 2.1.3 (c) and in particular,

ρ((α1 − x)−1) = sup{1/|α− λ| : λ ∈ Sp x}

= 1/ inf{|α− λ| : λ ∈ Sp x} = 1/ dist(α, Sp x).

�

2.2 Properties concerning the continuity

For compact subsets K1, K2 of C, define the Hausdorff distance by

∆(K1, K2) = max( sup
z∈K2

dist(z,K1), sup
z∈K1

dist(z,K2)).

We shall say that x 7→ Sp x is continuous at a ∈ A if, for every ε > 0,
there exists δ > 0 such that ||x− a|| < δ implies ∆(Sp x, Sp a) < ε.

If A is a commutative Banach algebra, then the spectrum function is
continuous. In fact, we have a more precise result:

Theorem 2.2.1 Let A be a Banach algebra. Suppose that x, y ∈ A commute.
Then Sp y ⊆ Sp x+D(0, ρ(x− y)) and consequently we have ∆(Sp x, Sp y) ≤
ρ(x− y) ≤ ‖x− y‖.

13



Proof. Suppose the inclusion is not true. This means that there exists
α ∈ Sp y such that dist(α, Sp x) > ρ(x − y). Therefore by Proposition 2.1.4
we have ρ((α1 − x)−1)ρ(x − y) < 1. Since (α1 − x)−1 and x − y commute,
we have ρ((α1 − x)−1(x − y)) ≤ ρ((α1 − x)−1)ρ(x − y) < 1. But then
α1−y = (α1−x)(1+(α1−x)−1(x−y)) is invertible, contradicting α ∈ Sp y.
�

In general, the spectrum function need not to be continuous:

Example 2.2.2 Let H be the separable Hilbert space and let A be the Banach
algebra L(H). There exists T ∈ A and a sequence (Tk) in A such that Tk → T
and Sp(Tk) = {0} for all k ≥ 1, but SpT 6= {0}.

Proof. Let (αn) be the sequence of positive numbers defined by αn = e−k

if n = 2k(2l+1) (so that k counts the number of prime factors 2 of n). If (en)
is an orthonormal basis of H , define T ∈ A by Ten = αnen+1 and Tk ∈ A for
k ≥ 1 by

Tken =

{
0 if n = 2k(2l + 1) for some l

αnen+1 otherwise.

Now we have ‖T − Tk‖ ≤ e−k so that Tk → T . Furthermore one easily
checks T 2k+1

k en = 0 for every n, so that Tk is nilpotent and hence SpTk = {0}.
We show that ρ(T ) > 0 so that SpT 6= {0}. Now Tme1 = α1 · · ·αmem+1,

hence ‖Tm‖ ≥ α1 · · ·αm. By the definition of the sequence (αn) we have
α1 . . . α2t−1 =

∏t−1
j=0 exp(−j2t−j−1), t ≥ 1, and therefore

(α1 . . . α2t−1)
1/(2t−1) =

t−1∏

j=0

exp(−j2t−j−1)1/2t−1 >

t−1∏

j=0

exp(−j2t−j−1)1/2t−1

=
t−1∏

j=0

exp(−j2−j) = exp(−
t−1∑

j=0

j2−j) ≥ exp(−σ),

where σ :=
∑∞

j=0 j2
−j. Hence ρ(T ) = lim ‖Tm‖1/m ≥ e−σ > 0 as required. �

Although the spectrum function might be discontinuous, we have the
following result.

Theorem 2.2.3 Let A be a Banach algebra. Then the spectrum function
x 7→ Sp x is upper semicontinuous on A, that is, for every open set U con-
taining Sp x there exists δ > 0 such that ‖x − y‖ < δ implies Sp y ⊂ U . In
particular, the spectral radius ρ is upper semicontinuous on A.
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Proof. Let U ⊃ Sp x be open and suppose the theorem not to be true.
Then there exist sequences (xn) and (αn) such that xn → x and αn ∈ Sp xn∩
(C \ U). Then |αn| ≤ ‖xn‖ so that (αn) is bounded. By the Bolzano-
Weierstrass theorem, we may assume that αn → α for some α ∈ C. Because
U is open, we have α /∈ U , hence α1−x is invertible. But the set of invertible
elements is open, so that αn1 − xn is invertible for large n, contradicting
αn ∈ Sp xn. �

The first important results concerning spectral variation are due to J. D.
Newburgh. First a lemma:

Lemma 2.2.4 Let A be a Banach algebra and let x ∈ A. Let U ⊃ Sp x be an
open set and let f : U → C be a holomorphic function. If (xn) is a sequence
in A such that xn → x, we have Sp xn ⊂ U for large n and f(xn) → f(x).

Proof. Choose a bounded open set V such that Sp x ⊂ V ⊂ V ⊂ U .
Then we have Sp xn ⊂ V for large n by Theorem 2.2.3. We assume w.l.o.g.
that Sp xn ⊂ V for all n ≥ 1.

Now V is a compact subset of U , so there exists a cycle γ in U that
encloses V and therefore Sp x and all Sp xn, n ≥ 1. By the Theorem 2.1.3
(a) we have

2πi(f(xn) − f(x)) =

∫

γ

f(λ)[(λ1 − xn)−1 − (λ1 − x)−1]dλ.

Since Im γ is compact, to prove f(xn) → f(x) it suffices to show

sup
λ∈Im γ

‖(λ1 − xn)−1 − (λ1 − x)−1‖ → 0.

Now (λ1−xn)[(λ1−xn)−1−(λ1−x)−1](λ1−x) = (λ1−x)−(λ1−xn) = xn−x,
so that

‖(λ1 − xn)−1 − (λ1 − x)−1‖ = ‖(λ1 − xn)−1(xn − x)(λ1 − x)−1‖

≤ sup
λ,n

‖(λ1 − xn)−1‖‖xn − x‖ sup
λ

‖(λ1− x)−1‖,

where both suprema are finite because Im γ and {xn : n ≥ 0} ∪ {x} are
compact. Since xn → x the proof is finished. �

Theorem 2.2.5 (J. D. Newburgh) Let A be a Banach algebra and let x ∈
A. Suppose U, V are disjoint open sets such that Sp x ⊂ U∪V and Sp x∩U 6=
∅. Then there exists r > 0 such that ‖x− y‖ < r implies Sp y ∩ U 6= ∅.
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Proof. By Theorem 2.2.3, there exists δ > 0 such that ‖x−y‖ < δ implies
Sp y ⊂ U ∪ V . If the theorem is false, there exists a sequence (xn) such that
xn → x and Sp xn ⊂ V for n ≥ 1.

Let f be the holormophic function on U ∪ V defined by 1 on U and
0 on V . Now if n ≥ 1 and γn is a circle that encloses Sp xn in V , we
have 2πif(xn) =

∫
γn
f(λ)(λ1 − x)−1dλ = 0 by Theorem 2.1.3 (a), so that

f(xn) = 0. On the other hand, Sp f(x) = f(Spx) contains 1 so that f(x) 6= 0.
But we have f(xn) → f(x) by the preceding lemma, a contradiction. �

Corollary 2.2.6 (J. D. Newburgh) Let A be a Banach algebra, a ∈ A
and suppose that Sp a is totally disconnected. Then x 7→ Sp x is continuous
at a.

Proof. If Sp a is totally disconnected, then for every ε > 0, there are
some λi ∈ C and εi ≤ ε such that Sp a is contained in a disjoint union
D(λ1, ε1) ∪ · · · ∪D(λn, εn) and such that Sp a ∩D(λi, εi) 6= ∅ for 1 ≤ i ≤ n.
Now by Theorem 2.2.3 and Theorem 2.2.5 there exists δ > 0 such that
‖x− a‖ < δ implies

Sp x ⊂ D(λ1, ε1) ∪ · · · ∪D(λn, εn) and Sp x ∩D(λi, εi) 6= ∅, 1 ≤ i ≤ n.

Hence dist(λ, Sp a) ≤ 2ε for λ ∈ Sp x and dist(λ, Spx) ≤ 2ε for λ ∈ Sp a, so
that ∆(Sp x, Sp a) ≤ 2ε. �

This implies in particular that the spectral function is continuous at all
elements having finite or countable spectrum.

Corollary 2.2.7 Let A be a Banach algebra and let k ≥ 1. Then

Bk := {a ∈ A : # Sp a ≤ k}

is a closed set in A.

Proof. Let a ∈ A and (an) be a sequence in Bk converging to a. Suppose
# Sp a > k, so that {λ1, . . . , λk+1} ⊆ Sp a for some λi. Now choose ε > 0
such that D(λ1, ε) ∪ · · · ∪ D(λk+1, ε) is a disjoint union. By Theorem 2.2.5
we then have Sp an ∩ D(λi, ε) 6= ∅ for 1 ≤ i ≤ k + 1 and large n, so that
# Sp an > k, a contradiction. �
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2.3 Subharmonic properties of the spectrum

Lemma 2.3.1 Let f be an analytic function from a domain D of C into a
Banach space X. Then λ 7→ log ‖f(λ)‖ is subharmonic on D.

Proof. Clearly, log ‖f‖ is continuous, hence upper semicontinuous. If B
is the closed unit ball of X∗, then

log ‖f(λ)‖ = sup{log |(φ ◦ f)(λ)| : φ ∈ B}.

Since φ ◦ f is holomorphic for every φ, log |φ ◦ f | is subharmonic by Exam-
ple 1.2.2, hence Proposition 1.2.3 (c) yields the result. �

This is the main theorem which connects subharmonic functions with
Banach algebras:

Theorem 2.3.2 (E. Vesentini) Let f be an analytic function from a do-
main D of C into a Banach algebra A. Then both λ 7→ ρ(f(λ)) and
λ 7→ log ρ(f(λ)) are subharmonic functions on D.

Proof. Using Theorem 1.2.5, we only have to show that λ 7→ log ρ(f(λ))
is subharmonic. For n ≥ 1 set

un(z) = 2−n log ‖f(z)2n

‖ (z ∈ U).

Since f 2n

is a holomorphic function, the previous lemma implies that un is
subharmonic on U . Also, because ‖a2n+1

‖ ≤ ‖a2n

‖‖a2n

‖ for all a ∈ A, the
sequence (un) is decreasing, and by the spectral readius formula it converges
to log ρ(f). Hence by Proposition 1.2.3 (b) log ρ(f) is subharmonic on D. �

Note that this result yields again the upper semicontinuity of the spectral
radius ρ, without using Theorem 2.2.3.

Like the spectral radius, the spectral diameter has subharmonic be-
haviour, too:

Theorem 2.3.3 Let f be an analytic function from a domain D of C into a
Banach algebra A. Then the functions λ 7→ δ(f(λ)) and λ 7→ log δ(f(λ)) are
both subharmonic, where δ(x) := diam Sp(x) := sup{|λ − µ| : λ, µ ∈ Sp x}
for x ∈ A.

Proof. Let x ∈ A and α ∈ C with |α| = 1. We denote by δα(x) the
length of the projection of Spx on the line {tα : t ∈ R}. We then have
δ(x) = sup|α|=1 δα(x) and

δα(x) = sup{Re(αλ) : λ ∈ Sp x} − inf{Re(αλ) : λ ∈ Sp x}.
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If we consider the holomorphic function λ 7→ eαλ on C, by the holomorphic
functional calculus we have Sp eαx = eα Sp x so that

log ρ(eαx) = log sup{|eαλ| : λ ∈ Sp x} = sup{Re(αλ) : λ ∈ Sp x}.

Similarly, log ρ(e−αx) = − inf{Re(αλ) : λ ∈ Sp x} and thus we have

δα(x) = log ρ(eαx) + log ρ(e−αx).

Therefore, δα(f) is subharmonic by Vesentini’s theorem for each |α| = 1.
Hence δ(f) = sup|α|=1 δα(f) is subharmonic by Proposition 1.2.4, noting that
(λ, α) 7→ δα(f(λ)) is upper semicontinuous by Theorem 2.2.3.

Now if p is a polynomial, then λ 7→ ep(λ)f(λ) is analytic so that δ(epf) =
|ep|δ(f) is subharmonic by the first part. We now use Theorem 1.3.4 to
conclude that log δ(f) is subharmonic. �

Remark: Using Vesentini’s theorem, there are several other analytic prop-
erties of the spectrum to discover (see [2], section 3.4). Let f : D → A be an
analytic function on a domain D of C into a Banach algebra A and consider
the function λ 7→ Sp f(λ). We then have e. g. a spectral maximum principle
and a spectral Liouville theorem. Also one can prove that isolated spectral
values are holomorphic functions.

3 Applications

We now give some examples where subharmonicity is used in Banach algebra
theory. Some of them use the notion of the radical of a Banach algebra and
some use representation theory, where we refer to the appendix in both cases.
I follow [2], chapter 5, although I changed some of the proofs.

3.1 Some elementary applications

Theorem 3.1.1 Let a be an element of a Banach algebra and let U be an
open bounded set containing Sp a. Then supλ∈∂U ρ((a − λ1)−1(x − a)) < 1
implies Sp x ⊆ U .

Proof. Let D = C \ U , then a− λ1 is invertible for λ ∈ D, so that

f(λ) = (a− λ1)−1(x− a)

is a well-defined analytic function on the domain D. Now, by hypothesis
C := supλ∈∂U ρ((a− λ1)−1(x− a)) < 1, so we have

lim sup
λ→λ0

ρ(f(λ)) ≤ C for λ0 ∈ ∂D = ∂U and
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ρ(f(λ)) ≤ ‖f(λ)‖ → 0 for λ→ ∞.

Hence by the maximum principle (Corollary 1.3.2), we have ρ(f(λ)) ≤ C < 1
for all λ ∈ D. So 1 + f(λ) is invertible for λ ∈ D = C \ U and hence

x− λ1 = (a− λ1)(a− λ1)−1(x− a + a− λ1) = (a− λ1)(f(λ) + 1)

is invertible as well. Therefore λ /∈ Sp x for λ ∈ C \ U and the theorem is
proved. �

As an application we prove a theorem due to Geršgorin dealing with
nearly diagonal matrices.

Corollary 3.1.2 (S. A. Geršgorin) Let x = (aij) be a n × n matrix and
let a = diag(a11, . . . , ann). Suppose that for some ε > 0, we have ‖x − a‖ <
ε, where ‖ · ‖ is the L(lnp )-norm for some 1 ≤ p ≤ ∞, and that D(aii, ε)
and D(ajj, ε) have disjoint or identical boundaries for i 6= j. Then Sp x ⊆
D(a11, ε) ∪ · · · ∪D(ann, ε).

Proof. Let U := D(a11, ε) ∪ · · · ∪D(ann, ε), then clearly Sp a ⊆ U , so by
Theorem 3.1.1 it remains to check that supλ∈∂U ρ((a − λ1)−1(x − a)) < 1.
But by hypothesis, λ ∈ ∂U implies |λ− aii| ≥ ε for all i, so we have

‖(a−λ1)−1‖ = ‖ diag(1/(a11−λ), . . . , 1/(ann−λ)‖ = max
i

|1/(aii−λ)| ≤ 1/ε,

so that

sup
λ∈∂U

ρ((a− λ1)−1(x− a)) ≤ sup
λ∈∂U

‖(a− λ1)−1‖ · ‖x− a‖ < 1/ε · ε = 1

as required. �

For the next application, we need a lemma.

Lemma 3.1.3 Let A be a Banach algebra and let a, b ∈ A. Then we have

eabe−a =
∑

n

1

n!
[a, . . . , [a︸ ︷︷ ︸

n times

, b]...],

where [a, b] := ab− ba is the commutator of a and b.

Proof. We have

eabe−a =
∑

n

∑

k+l=n

ak

k!
· b ·

(−a)l

l!
=

∑

n

1

n!

n∑

k=0

(
n

k

)
akb(−a)n−k,
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these series converging absolutely, so it suffices to prove
n∑

k=0

(
n

k

)
akb(−a)n−k = [a, . . . , [a︸ ︷︷ ︸

n times

, b]...] for each n,

what can be done by a simple induction. �

Theorem 3.1.4 (D. C. Kleinecke-F. V. Širokov) Let a, b be in a Ba-
nach algebra. Suppose that a(ab− ba) = (ab− ba)a. Then ρ(ab− ba) = 0.

Proof. Using the previous lemma with the hypothesis [a, [a, b]] = 0, we
get

eλabe−λa =
∑

n

λn

n!
[a, . . . , [a︸ ︷︷ ︸

n times

, b]...] = b+ λ[a, b]

for all λ ∈ C. Define the subharmonic function u(µ) = ρ(µb + [a, b]) on C,
then by Theorem 1.3.3 we have

ρ([a, b]) = u(0) = lim sup
µ→0,µ6=0

u(µ),

where u(µ) = |µ|ρ(b + [a, b]/µ) = |µ|ρ(e
1

µ
abe−

1

µ
a) = |µ|ρ(b) → 0 for µ → 0,

µ 6= 0 (we have used the elementary fact that Sp yxy−1 = Sp x for invertible
y). Hence ρ([a, b]) = 0. �

Theorem 3.1.5 Let a, b be in a Banach algebra and suppose there exists
R > 0 such that Sp a∩D(0, R) has no accumulation point other than 0 (this
holds for example if a is a compact linear operator). If (ab − ba)a = 0 or
a(ab− ba) = 0, then ρ(ab− ba) = 0.

Proof. Suppose for instance that (ab − ba)a = 0, the other case being
studied similarly. Then (b− 1

λ
(ab− ba))(λ1− a) = λb− (ab− ba)− ba+ 0 =

(λ1−a)b for all λ 6= 0. Hence for λ /∈ Sp a∪{0}, we have (λ1−a)b(λ1−a)−1 =
b− 1

λ
(ab− ba), so that ρ(b) = ρ(b− 1

λ
(ab− ba)) and

|λ|ρ(b) = ρ(λb− (ab− ba)).

Now consider the subharmonic function u(λ) = log ρ(λb − (ab − ba)) on
C. For every r > 0, we have the submean inequality

u(0) ≤
1

2π

∫ 2π

0

u(reit)dt

and if reit /∈ Sp a, we have

u(reit) = log(|reit|ρ(b)) = log r + log ρ(b).

But by hypothesis, if 0 < r < R, reit /∈ Sp a for almost all t, hence we have
u(0) ≤ log r + log ρ(b). Now letting r → 0 yields u(0) = −∞ and therefore
ρ(ab− ba) = 0. �
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3.2 Spectral characterizations of commutative Banach
algebras

If A is commutative, we know that the spectral radius is subadditive, sub-
multiplicative and uniformly continuous on A. By Proposition A.1.3 (b) the
same result is also true supposing A/RadA to be commutative. Surpris-
ingly, the converse is true. (The definition of the radical RadA and some
basic facts can be found in the appendix A.1.)

Definition 3.2.1 For a Banach algebra A, we define the centre modulo the
radical

Z(A) = {a ∈ A : ax− xa ∈ RadA, x ∈ A}.

Lemma 3.2.2 Let a ∈ A be such that # Sp(ax − xa) = 1 for all x ∈ A.
Then a ∈ Z(A).

Proof. (This proof uses representation theory; an introduction can be
found in the appendix A.2.) If # Sp(ax − xa) = 1 for all x ∈ A, then by
Lemma A.3.6, for each continuous irreducible representation π of A, we have
π(a) = α1 for some α ∈ C, so that π(ax− xa) = απ(x) − π(x)α = 0. Hence
ax− xa ∈ ker π for all π and so ax− xa ∈ RadA by Proposition A.2.5. �

Theorem 3.2.3 Let a ∈ A. Then the following properties are equivalent:

(a) a ∈ Z(A),

(b) there exists M > 0 such that ρ(a+ x) ≤M(1 + ρ(x)), for every x ∈ A,

(c) there exists N > 0 such that ρ((a−λ1)−1x) ≤ Nρ((a−λ1)−1)ρ(x), for
every x ∈ A and λ /∈ Sp a.

Proof. (a)⇒(b),(c). If we consider Ã = A/RadA, then ρA(x) = ρÃ(x̃)
by Proposition A.1.3 (b). A straightforward check yields also a ∈ Z(A) if
and only if ã ∈ Z(Ã). Therefore we can replace A by Ã and hence (by
Proposition A.1.3 (a)) assume w.l.o.g. that A is semi-simple.

Then (a) implies that a commutes with every x ∈ A, hence ρ(a + x) ≤
ρ(a) + ρ(x) and (b) holds with M = max(1, ρ(a)). Moreover, (a − λ1)−1

commutes with every x ∈ A as well, so that by the submultiplicity of the
spectral radius (c) holds with N = 1.

(b)⇒(a). We will show that ρ(au − ua) = 0 for every u ∈ A and use
Lemma 3.2.2 to conclude that a ∈ Z(A). Fix u ∈ A and define

f(λ) =

{
1
λ
(a− eλuae−λu) for λ 6= 0

[a, u] for λ = 0.
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Then f is analytic on C, because by Lemma 3.1.3 we have

1

λ
(a− eλuae−λu) =

1

λ
(−λ[u, a] −

λ2

2
[u, [u, a]] − . . . ) → [a, u] for λ→ 0.

Now by hypothesis, for λ 6= 0, we have ρ(f(λ)) ≤ M
|λ|

(1 + ρ(eλuae−λu)) =
M
|λ|

(1 + ρ(a)). So the subharmonic function λ 7→ ρ(f(λ)) tends to zero at

infinity. By the maximum principle it is identically 0 and consequently ρ(au−
ua) = ρ(f(0)) = 0 as desired.

(c)⇒(b). If we look at the proof of Theorem 2.2.1, we conclude that (c)
implies Sp y ⊆ Sp a+D(0, Nρ(y−a)), for every y ∈ A. In particular we have
ρ(a + x) ≤ ρ(a) +Nρ(x) ≤M(1 + ρ(x)) for M = max(ρ(a), N). �

Corollary 3.2.4 Let A be a Banach algebra. Then the following properties
are equivalent:

(a) A/RadA is commutative.

(b) ρ is subadditive on A, that is there exists M > 0 such that ρ(x + y) ≤
M(ρ(x) + ρ(y)), for all x, y ∈ A.

(c) ρ is submultiplicative on A, that is there exists N > 0 such that ρ(xy) ≤
Nρ(x)ρ(y), for all x, y ∈ A.

(d) ρ is uniformly continous on A, which implies that there exists C > 0
such that |ρ(x) − ρ(y)| ≤ C‖x− y‖, for all x, y ∈ A.

Proof. The equivalence of (a), (b) and (c) is clear from Theorem 3.2.3 and
we have (a)⇒(d) by Theorem 2.2.1. If (d) holds, then ρ(a+x) ≤ C‖a‖+ρ(x),
for every x, a ∈ A, hence we can use Theorem 3.2.3 (b)⇒(a) to conclude (a).
�

3.3 Automatic continuity for Banach algebra homo-
morphisms

If A is a Banach algebra and T : A → B is a surjective homomorphism
onto a semi-simple Banach algebra B (semi-simplicity is defined in the ap-
pendix A.1), then T is automatically continuous. This is a famous result
proved 1967 by B. E. Johnson using mainly representation theory. We now
give a simple proof of this result using subharmonic functions.

Note that if T is a homomorphism, then T maps the invertible elements of
A into invertible elements of B. Hence SpTx ⊆ Sp x and therefore ρ(Tx) ≤
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ρ(x) ≤ ‖x‖. In fact, it suffices to ask for a surjective linear mapping satisfying
ρ(Tx) ≤ ‖x‖ to conclude its continuity.

We first need a lemma and we shall call q ∈ A quasi-nilpotent if ρ(q) = 0.

Lemma 3.3.1 Let A be a Banach algebra. Let a ∈ A and suppose ρ(a+q) =
0 for all quasi-nilpotent elements q ∈ A. Then a ∈ RadA.

Proof. Taking q = 0, we have ρ(a) = 0 and so ρ(euae−u) = 0 for all
u ∈ A, therefore ρ(a− euae−u) = 0. Let f : C → A be the analytic function
defined as in Theorem 3.2.3, then ρ(f(λ)) is a subharmonic function with
ρ(f(λ)) = 0 for λ 6= 0. Hence by Theorem 1.3.3, we have

ρ(au − ua) = ρ(f(0)) = lim sup
λ→0,λ6=0

ρ(f(λ)) = 0.

Hence, by Lemma A.3.6, for every continuous irreducible representation π, we
have π(a) = α1 for some α ∈ C. But α = ρ(π(a)) ≤ ρ(a) = 0 (note that π is
a homomorphism), so that a ∈ ker π. Hence a ∈ RadA by Proposition A.2.5.
�

Theorem 3.3.2 Let A and B be two Banach algebras with B semi-simple.
Suppose that T is a surjective linear mapping from A onto B such that
ρ(Tx) ≤ ‖x‖, for every x ∈ A. Then T is continuous.

Proof. Let (an) be a sequence in A such that an → 0 and Tan → b in
B. By the closed graph theorem, it will follow that T is continuous if we can
show that b = 0. We will show that ρ(b + y) = 0 for every quasi-nilpotent
element y of B. Then Theorem 3.3.1 forces b to be in RadB = {0} and
hence b = 0 as desired.

So let a quasi-nilpotent y ∈ B be given. For z ∈ B define

fz(λ) = (λ− 1)z + b+ y,

then log ρ(fz(λ)) is a subharmonic function on C. Let M : B×(0,∞) → R be
defined asM(z, r) := sup|λ|=r ρ(fz(λ)), then Hadamard’s three circle theorem
(Corollary 1.5.2, with the preceding remark) states that

ρ(b+ y)2 = ρ(fz(1))2 ≤ M(z, r) ·M(z, 1/r).

In particular, for a sequence (zn) in B, we get

ρ(b+ y)2 ≤ lim sup
n→∞

M(zn, r) · lim sup
n→∞

M(zn, 1/r).
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Now, M(z, r) = supt∈[0,2π] ρ(fz(re
it)) and because (t, z, r) 7→ ρ(fz(re

it)) is
upper semicontinuous on [0, 2π]×B×(0,∞), M is also upper semicontinuous
by Proposition 1.1.4. Hence considering zn = Tan → b, we get

lim sup
n→∞

M(zn, r) ≤M(b, r) = sup
|λ|=r

ρ(λb+ y).

Now choose a, x ∈ A such that Ta = b and Tx = y. Using the assumption
ρ(Tu) ≤ ‖u‖ for u ∈ A, we get on the other hand

M(zn, 1/r) = sup
|λ|=1/r

ρ(T (λan + a + x− an))

≤ ‖an‖/r + ‖a + x− an‖,

so that lim supn→∞M(zn, 1/r) ≤ ‖a + x‖ since an → 0. Inserting these
estimates, we get

ρ(b+ y)2 ≤ sup
|λ|=r

ρ(λb+ y) · ‖a + x‖

for r > 0. Hence letting r → 0 and using again the upper semicontinuity of
ρ, we finally get ρ(b+ y)2 ≤ ρ(y) · ‖a + x‖ = 0 as desired. �

Corollary 3.3.3 (B. E. Johnson) Let A and B be two Banach algebras,
with B semi-simple. Suppose that T is a surjective homomorphism from A
onto B. Then T is continuous. �

As a consequence, we see that the algebraic and topological structures in
a Banach algebra are tied together much more closely than one might suspect
from the original definition:

Corollary 3.3.4 (Uniqueness-of-norm Theorem) Let (A, ‖ · ‖) be a
semi-simple Banach algebra and let ||| · ||| be another norm making (A, ||| · |||)
to a Banach algebra. Then ‖ · ‖ and ||| · ||| are equivalent.

Proof. Because the definition of semi-simplicity is purely algebraic, we
see that (A, ||| · |||) is semi-simple as well. If j : (A, ‖ · ‖) → (A, ||| · |||) is the
identity-map, j and j−1 are both continuous by Johnson’s theorem, so that
‖ · ‖ and ||| · ||| are equivalent. �
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3.4 Spectral characterizations of finite-dimensional al-
gebras

Let A be a Banach algebra such that A/RadA is finite-dimensional. For all
x ∈ A, the class x̃ is algebraic in A/RadA and consequently Sp x is finite.
Surprisingly, the converse is true even supposing that the spectrum is finite
only on a non-empty open set of A.

We will use the following extension of Theorem 2.3.3. The proof is rather
complicated and we refer to [2], Theorems 7.1.3 and 7.1.13.

Theorem 3.4.1 Let f be an analytic function from a domain D of C into a
Banach algebra A. Then for arbitrary n ≥ 1 the functions λ 7→ δn(f(λ)) and
λ 7→ log δn(f(λ)) are subharmonic on D, where δn denotes the n-th spectral
diameter defined by

δn(x)n(n+1)/2 = sup{
∏

1≤i<j≤n+1

|λi − λj| : λ1, . . . , λn+1 ∈ Sp x}.

�

We have the following corollaries (which depend in the case n = 1 only
on the proven Theorem 2.3.3, of course):

Corollary 3.4.2 Let f be an analytic function from a domain D of C into
a Banach algebra A. Let n ≥ 1 and let E = {λ ∈ D : # Sp f(λ) ≤ n} (being
closed in D by Corollary 2.2.7). If E has positive measure, we have E = D.

Proof. By Theorem 3.4.1 u := log δn(f) is subharmonic and we have
E = {λ ∈ D : u = −∞}, because δn(x) = 0 if and only if # Spx ≤ n. But
if u is not identically −∞, E is a set of measure zero by Corollary 1.4.2,
contradicting the assumption. Hence u ≡ −∞ and E = D. �

Corollary 3.4.3 Let A be a Banach algebra and U ⊆ A be a non-empty
open set.

(a) If there exists n ≥ 1 such that # Sp x ≤ n for all x ∈ U , then we have
# Sp x ≤ n for all x ∈ A.

(b) If Sp x is finite for all x ∈ U (so that nx may depend on x), then there
exists n ≥ 1 such that # Sp x ≤ n for all x ∈ A.
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Proof. (a) Choose a ∈ U , let x ∈ A and consider the analytic function
f(λ) = a+λ(x−a) on C. Now E = {λ ∈ C : # Sp f(λ) ≤ n} has non-empty
interior, and hence is a set of positive measure. By the preceding Corollary
we then have E = C and in particular 1 ∈ E, so that # Sp x = # Sp f(1) ≤ n.

(b) Let Bk = {x ∈ A : # Sp x ≤ k}, then B = ∪kBk ⊇ U , so that B
has non-empty interior. Now the sets Bk are closed by Corollary 2.2.7, so by
Baire’s theorem there exists n ≥ 1 such that Bn has non-empty interior. We
then apply (a) to conclude Bn = A. �

If we connect this Corollary with a result mentioned in the appendix,
then we get our main theorem for this section.

Theorem 3.4.4 Let A be a Banach algebra and U ⊆ A be a non-empty
open set such that Sp x is finite for all x ∈ U . Then A/RadA is finite-
dimensional.

Proof. Replacing A by A/RadA does not affect the spectrum, hence we
may assume w.l.o.g. that A is semi-simple. Now Corollary 3.4.3 (b) and
Theorem A.3.4 yield the desired result. �

We now give an application of Corollary 3.4.3 (a) (with n = 1).

Theorem 3.4.5 Let A be a Banach algebra containing a non-empty open
set U of invertible elements such that ρ(x)ρ(x−1) = 1 for all x ∈ U . Then
A/RadA ∼= C.

Proof. If we replace A by A/RadA, then the spectrum is not affected,
so we can w.l.o.g assume that A is semi-simple.

Let x ∈ U . There exists r > 0 such that |λ| < r implies x − λ1 ∈ U
and therefore ρ(x− λ1)ρ(x− λ1)−1 = 1. By Proposition 2.1.4 we then have
ρ(x− λ1) = dist(λ, Spx), so that

Sp x ⊆ D(λ, dist(λ, Sp x)), |λ| < r.

We claim that # Sp x = 1. Suppose there are distinct µ, ν ∈ Sp x and suppose
|µ| ≤ |ν|. Then there exists λ with |λ| < r and |λ− µ| < |λ− ν|. But then
dist(λ, Sp x) ≤ |λ−µ| < |λ− ν| so that ν /∈ D(λ, dist(λ, Sp x)) contradicting
ν ∈ Sp x. Thus # Spx = 1 for all x ∈ U , hence by Corollary 3.4.3 (a) we
have # Sp x = 1 for all x ∈ A.

We now prove A ∼= C. If x ∈ A, then # Sp x = {λ} for some λ ∈ C. If
π is a continuous irreducible representation on a Banach space X, we have
dimX = 1 by Lemma A.3.2. So we have ∅ 6= Sp π(x) ⊆ Sp x = {λ}, so that
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π(x) = λ1. This being true for all continuous irreducible representation on
X, we conclude x = λ1. Hence A ∼= C. �

We can even drop the assumption of semi-simplicity in the next interesting
result, which shows that in non-trivial Banach algebras there always exists
an invertible element x ∈ A such that ‖x−1‖ > 1/‖x‖.

Corollary 3.4.6 Let A be a Banach algebra containing a non-empty open
set U of invertible elements such that ‖x‖ · ‖x−1‖ = 1, for all x ∈ U . Then
A ∼= C.

Proof. For x ∈ U , we have 1 = ρ(1) ≤ ρ(x)ρ(x−1) ≤ ‖x|| · ‖x−1‖ = 1,
so A/RadA ∼= C by the preceding theorem. But we show that A is in fact
semi-simple.

First, Let G1(A) be the component in the set of the invertible elements
that contains 1 and we assume w.l.o.g. that U is connected. Let

B := {x ∈ G1(A) : ‖x‖ · ‖x−1‖ = 1}.

Then B is a closed subset of G1(A) containing 1. We claim that B is
open. Choose a ∈ U , then Ua−1 is a neighbourhood of 1. If x ∈ B
and y ∈ Ua−1, then we have xy ∈ B because 1 ≤ ‖xy‖‖y−1x−1‖ =
‖xyaa−1‖‖aa−1y−1x−1‖ ≤ ‖x‖‖ya‖‖a−1‖‖a‖‖a−1y−1‖‖x−1‖ = 1 and xUa−1

is a connected set containing x. Hence xUa−1 ⊆ B. Thus B is open, so that
B = G1(A).

Now we can show that RadA = {0}. Suppose x ∈ RadA and x 6=
0. For t ≥ 0, 1 + tx is invertible (Proposition A.1.2) and therefore xt =
1+tx
1+t

∈ G1(A), so that ‖xt‖‖x
−1
t ‖ = 1. Now if t → ∞, we have xt → x and

therefore ‖x−1
t ‖ = 1/‖xt‖ → 1/‖x‖. Then x is invertible by Lemma 2.1.2,

contradicting ρ(x) = 0. Hence RadA = {0} and A ∼= C as required. �

A Appendix

This appendix deals with the radical of a Banach algebra and some represen-
tation theory as needed in chapter 3. The material presented here is basically
from [1] and [2].

A.1 The radical of a Banach algebra

Let A be a Banach algebra. A linear subspace I ⊆ A is a left ideal if xI ⊆ I
for all x ∈ A. It is called maximal if, for every proper left-ideal (i. e. J ⊂ A,
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J 6= A) containing I, we have J = I. Similarly, (maximal) right ideals and
two-sided ideals are defined.

In this appendix we will use the fact that every proper left ideal is con-
tained in a maximal left ideal and that every maximal left ideal is closed (see
e. g. [2], Lemma 3.1.1 and Corollary 3.2.2).

Definition A.1.1 The radical RadA of a Banach algebra A is defined as
the intersection of all maximal left ideals of A. If RadA = {0}, then we say
that A is semi-simple.

An example of a semi-simple Banach algebra is the algebra L(X) of all
bounded linear operators on a Banach space (see e. g. [2], Theorem 3.1.4).

The next proposition provides alternative formulations for the radical.

Proposition A.1.2 Let A be a Banach algebra. Then the following state-
ments are equivalent:

(a) x ∈ I for all maximal left ideals I of A.

(b) x ∈ J for all maximal right ideals J of A.

(c) 1 + yx is invertible in A, for all y ∈ A.

(d) 1 + xy is invertible in A, for all y ∈ A.

Consequently, RadA is a closed two-sided ideal and every x ∈ RadA is
quasi-nilpotent (i. e. ρ(x) = 0).

Proof. (a)⇒(c) Let y ∈ A and suppose that 1 + yx is not left-invertible
in A. Then A(1 + yx) is a proper left ideal of A, so contained in a maximal
left ideal I of A. Hence we have yx ∈ I (since x ∈ I) and 1 + yx ∈ I, so
1 ∈ I, which leads to the contradiction I = A. Thus 1 + yx is left-invertible.

Now choose z ∈ A with (1 + z)(1 + yx) = 1, that is z + yx + zyx = 0.
As x ∈ I for all maximal left ideals I of A, the same holds for z. Hence
the argument above shows that 1 + z is left-invertible. But then 1 + z is
invertible and therefore so is 1 + yx.

(c)⇒(a) If there is a maximal left ideal I of A such that x /∈ I, then
I + Ax = A, hence 1 − yx ∈ I for some y ∈ A. But 1 − yx is invertible,
hence I = A which is a contradiction.

(c)⇔(d) If x, y ∈ A, we have that 1+xy is invertible if and only if 1+yx
is invertible. In fact, if z := (1 + xy)−1, then it is straightforward to check
that 1 − yzx is the inverse of 1 + yx.

(a)⇔(b) By the equivalence of (c) and (d), the statement (a) is seen to
be left-right symmetric, so that (a) and (b) are equivalent as well. �
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Proposition A.1.3 Let A be a Banach algebra, then we have:

(a) Ã := A/RadA is semi-simple.

(b) The coset x̃ is invertible in Ã if and only if x is invertible in A. There-
fore, SpA x = SpÃ x̃ and ρA(x) = ρÃ(x̃).

Proof. (a) Let I ′ be a maximal left ideal of Ã, then I = {x : x̃ ∈ I ′}
is a left ideal of A. It is maximal because if J is a left ideal containing I,
then I ′ ⊆ J̃ = {x̃ : x ∈ J}, so that I ′ = J and thus I = J . Conversely, if
I is a maximal left ideal of A, then Ĩ is a maximal left ideal of Ã for similar
reasons. Hence {x : x̃ ∈ Rad(Ã)} is in the intersection of all maximal left
ideals of A, that is the radical of A. Hence Rad(Ã) = {0̃} and hence Ã is
semi-simple.

(b) If x is invertible, then there exists y ∈ A such that yx = xy = 1.
Thus ỹx̃ = x̃ỹ = 1̃, hence x̃ is invertible. Conversely, if x̃ is invertible, there
exists y ∈ A such that ỹx̃ = x̃ỹ = 1̃. Then xy = 1 + u and yx = 1 + v with
u, v ∈ RadA, so by Proposition A.1.2, 1 + u and 1 + v are invertible in A.
Hence xy(1 + u)−1 = 1 and (1 + v)−1yx = 1 and thus x is invertible. �

A.2 Representation theory

Definition A.2.1 Let A be a Banach algebra and X be a complex vector
space 6= {0}. A homomorphism π : A → L(X) into the algebra of operators
on X is called a representation of A on X.

If a linear subspace Y ⊆ X satisfies π(x)Y ⊆ Y for all x ∈ A, we say
that Y is invariant under π(x). A representation π is said to be irreducible
if the only linear subspaces of X invariant under π(x) are {0} and X.

A representation π is said to be bounded if X is a Banach space and if
π(x) is a bounded linear operator on X for all x ∈ A. Moreover it is said to
be continuous if it is bounded and if there exists a constant C > 0 such that
||π(x)|| ≤ C||x|| for all x ∈ A.

Example A.2.2 Let I be a maximal left ideal of a Banach algebra A. Let
X = A/I be the Banach space with the norm |||ã||| = infu∈I ‖a + u‖. Then
π defined by π(x)ã = x̃a is an irreducible continuous representation of A on
X, called the left regular representation associated to I.

Proof. First note that since every maximal left ideal is closed, A/I with
the given norm is indeed a Banach space.
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It is obvious that π : A→ L(X) is a homomorphism. To check continuity,
if x ∈ A, we have xI ⊆ I and therefore

‖π(x)ã‖ = |||x̃a||| = inf
u∈I

‖xa + u‖ ≤ inf
u∈I

‖x(a + u)‖ ≤ ‖x‖ · |||ã|||,

so that ‖π(x)‖ ≤ ‖x‖.
It remains to check that π is irreducible. Now if Y 6= {0} is an invariant

linear subspace of X, J := {y ∈ A : ỹ ∈ Y } is a left ideal that properly
contains I. By maximality of I we must have J = A and hence Y = X as
required. �

Definition A.2.3 Write (I : A) for the kernel of the representation in the
preceding example, so that

(I : A) = {x ∈ A : xA ⊆ I}.

Proposition A.2.4 For every irreducible representation π of A there exists
a maximal left ideal I such that ker π = (I : A).

Proof. Let π be an irreducible representation of A on some complex vector
space X. Choose ξ 6= 0 in X arbitrarily and set

I = {x ∈ A : π(x)ξ = 0}.

We prove that I is a maximal left ideal such that ker π = (I : A).
Clearly, I is a left ideal and I 6= A. If J ⊃ I, J 6= I is a left ideal, then

Y = {π(x)ξ : x ∈ J} 6= {0} is an invariant subspace under π(x). Now
Y = X by assumption so there exists e ∈ J such that π(e)ξ = ξ. Hence for
all x ∈ A, we have xe − x ∈ I and therefore x = (xe − x) + xe ∈ I + J = J
so that J = A. This shows that I is maximal.

Now if x ∈ ker π, we have π(xa)ξ = π(x)π(a)ξ = 0 for all a ∈ A so that
xA ⊆ I and x ∈ (I : A). Conversely, if x ∈ A such that xA ⊆ I, we have
π(x)π(a)ξ = π(xa)ξ = 0 for each a ∈ A. But F = {π(a)ξ : a ∈ A} 6= {0} is
an invariant subspace under π(x) so that F = X and therefore π(x)X = {0}.
Thus x ∈ ker π, so that ker π = (I : A) is proved. �

By the preceding proposition, we have

{ker π : π irreducible repr.} ⊆ {(I : A) : I maximal left ideal}

⊆ {ker π : π continuous irreducible repr.},

hence these sets are equal. Furthermore, we have

RadA =
⋂

{(I : A) : I maximal left ideal}.
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Indeed, if x ∈ RadA we have xA ⊆ RadA ⊆ I for every maximal left ideal
I, so that x ∈ (I : A). On the other hand, if x ∈ (I : A) for every maximal
left ideal I, then we have x = x · 1 ∈ I; thus x ∈ RadA.

In particular, we have proven

Proposition A.2.5

RadA =
⋂

{ker π : π a continuous irreducible representation}. �

Remark: If A is commutative, every character χ : A → C is a continu-
ous irreducible representation on X = C. In fact, these are all irreducible
representations.

For, if π is a irreducible representation, then ker π = (I : A) = I for some
maximal ideal I. By the theory of commutative Banach algebras there exists
a character χ with kerχ = I = ker π. We have A/I ∼= C, hence if a ∈ A, we
can write a = λ1 + u with λ ∈ C and u ∈ I. We therefore have

π(a) = π(λ1) = λ1 = χ(λI) = χ(a),

so that π = χ as desired. �

A.3 Some results using representation theory

Some of the following statements are used in chapter 3 but they are using
representation theory rather then analytic or subharmonic methods. They
will depend on the following important theorem (for a proof see e. g. [4],
Theorem 2.1.2., or [2], Theorem 4.2.5.).

Theorem A.3.1 (Jacobson density theorem) Let π be a continuous ir-
reducible representation of A on a Banach space X. If ξ1, . . . , ξn are linearly
independent in X and if η1, . . . , ηn are in X, then there exists a ∈ A such
that π(a)ξi = ηi for 1 ≤ i ≤ n. �

We will use this theorem to deduce some facts about Banach algebras
with finite spectrum.

Lemma A.3.2 Let A be a Banach algebra, let n ≥ 1 and suppose # Sp x ≤ n
for x ∈ A. For every continuous irreducible representation π of A on a
Banach space X, we have dimX ≤ n.
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Proof. Let π be a continuous irreducible representation of A on a Banach
space X and suppose dimX > n. Then there exists ξ1, . . . , ξn+1 linear inde-
pendent vectors in X. By the Jacobson density theorem, there exists x ∈ A
such that π(x)ξi = iξi, 1 ≤ i ≤ n+1. Hence {1, . . . , n+1} ⊆ Sp π(x) ⊆ Sp x
contradiciting # Sp x ≤ n. �

For the proof of the next Lemma, see e. g. [2], Lemma 5.4.1.

Lemma A.3.3 Let A be a semi-simple Banach algebra, let m ≥ 1 and
suppose that every x ∈ A is algebraic of degree ≤ m. Then A is finite-
dimensional. �

Theorem A.3.4 Let A be a semi-simple Banach algebra and suppose there
exists n ≥ 1 such that # Spx ≤ n for x ∈ A. Then A is finite-dimensional.

Proof. By the preceding Lemma it suffices to show that every x ∈ A is
algebraic of degree ≤ n2. Now let x ∈ A and Sp x = {λ1, . . . , λm}, m ≤ n.
Let π be a continuous irreducible representation of A on X and suppose
λ1, . . . , λl ∈ Sp π(x), l ≤ m. Now dimX ≤ n by Lemma A.3.2, so by the
Caley-Hamilton theorem, we have (π(x) − λ1)

n · · · (π(x) − λm)n = 0. This
being true for all such representation π, we have (x− λ1)

n · · · (x− λm)n = 0
because A is semi-simple, so that x is algebraic of degree ≤ n2. �

For the next application we need the following theorem, proved by I. Ka-
plansky in his book Inifinite Abelian Groups, Ann Arbor, 1969. For another
proof see [2], Theorem 4.2.7.

Theorem A.3.5 (I. Kaplansky) Let X be a complex vector space and let
T be a linear operator from X into X. Suppose that there exists an integer
n ≥ 1 such that ξ, T ξ, . . . , T nξ are linearly dependent for all ξ ∈ X. Then T
is algebraic of degree less than or equal to n. �

This theorem combined with the Jacobson density theorem yields a
lemma used in chapter 3.

Lemma A.3.6 Let A be a Banach algebra and a ∈ A such that # Sp(ax −
xa) = 1 for all x ∈ A. Then for every continuous irreducible representation
π on A we have π(a) = α1 for some α ∈ C.

Proof. Let π be a continuous irreducible representation of A on a Banach
space X. First we show that π(a) is algebraic of degree ≤ 2. Suppose the
contrary, then by Theorem A.3.5 there exists ξ ∈ X such that ξ, η = π(a)ξ
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and π(a)η are linearly independent. By the Jacobson density theorem, we
then can choose x ∈ A such that

π(x)ξ = 0, π(x)η = −ξ, π(x)π(a)η = −η.

Then π(ax− xa)ξ = π(a)0 − π(x)η = ξ and π(ax − xa)η = π(a)(−ξ) + η =
−η + η = 0 so that {0, 1} ⊆ Sp π(ax − xa) ⊆ Sp(ax − xa), contradicting
# Sp(ax− xa) = 1.

Hence, π(a) is algebraic of degree ≤ 2 and we can write π(a)2 = β1π(a)+

β21 with some β1, β2 ∈ C. Let a′ := a− β1

2
1 so that π(a′)2 = (β1+

β2
2

4
)1 =: γ1.

Clearly, it suffices to show that π(a′) = α′1 for some α′ ∈ C. If we
again suppose the contrary, there exists ξ ∈ X such that ξ and η = π(a′)ξ
are linearly independent. Hence by the Jacobson density theorem, we can
choose x ∈ A such that

π(x)ξ = ξ, π(x)η = ξ + η.

Now π(a′x − xa′)ξ = η − (ξ + η) = −η and since π(a′)η = π(a′)2ξ = γξ,
we have π(a′x − xa′)η = π(a′)(ξ + η) − π(x)γξ = η + γξ − γξ = η, so that
{−1, 1} ⊆ Sp π(a′x− xa′) ⊆ Sp(ax− xa), a contradiction. Hence the lemma
is proved. �
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