Multigraded Structures in Polynomial Rings

K field

P = K|x1,...,xy,] polynomial ring
How can we equip P with a “good” grading?

e The set of degrees of “multihomogeneous” polynomials
should be well-ordered.

e The homogeneous components of P should be finite-
dimensional K-vector spaces.

e The graded version of Nakayama’s Lemma should hold.

e There should be a term ordering which is compatible

with the grading.

Positive Gradings.
P is graded by a matrix W € Mat,, ,,(Z)
degyy (z;) is the i*® column of W

Example. W = (11 --- 1) defines the standard grading.



Definition. a) The grading given by W is called weakly
positive if there is a linear combination of the rows of W
which has positive entries only.

b) The grading given by W is called positive if the rank
of W is m and if the first non-zero entry in each column of W

is positive.

Proposition. a) Every positive grading is weakly positive.

b) If the grading given by W is weakly positive, then
the homogeneous components of P and of finitely generated
graded P-modules are finite dimensional K-vector spaces.

c) If the grading given by W is weakly positive, then
the graded version of Nakayama’s Lemma holds. In partic-
ular, there is a well-behaved notion of “minimal number of
generators”.

d) If the grading given by W is weakly positive, there
is a (non-canonical) well-ordering on the set of degrees of
homogeneous polynomials.

e) If the grading given by W is positive, then Lex is a
well-ordering on the set of degrees of homogeneous polyno-
mials.

f) If the grading given by W is positive, then there exists

a degree compatible term ordering.



Situation.

01y...,0. €Z™

F = é P(—0;) graded free P-module

M Qz;’l graded submodule

V = (v1,...,vs) non-zero homogeneous generators of M
o module term ordering on the terms in F

Whenever an element g; € F' occurs, we write
LM, (gz) = Ci t; €r;

where ¢; € K, t; is a term, and 1 < ~; <.

(¢,7) such that ¢ < j and 7; = ~; is called a critical pair

tij = % for all ’L,]

_ 1 1 0, 0
Oij = o lij€i — o tj; e; critical syzygy

Sij = c% tij g; — % tji gj S-vector



The Multihomogeneous Buchberger Algorithm

1) Let B=0,W=V,G =10, and let s’ = 0.

2) Let d be the smallest degree with respect to Lex of
an element in B or in W. Form the subset By = {(¢,7) € B |
degyy (0i;) = d} and the subtuple Wy of elements of degree d
in W, and delete their entries from B and W, respectively.

3) If B4 = 0, continue with step 6). Otherwise, choose a
pair (¢,j) € Bg and remove it from By.

4) Compute the S-vector S;; and its normal remainder
Si; = NRgyg(Sij). If S;; = 0, continue with step 3).

5) Increase s’ by one, append g, = S}, to the tuple G,
and append {(i,s') | 1 < i < §',79; = s} to the set B.
Continue with step 3).

6) If Wy = (), continue with step 9). Otherwise, choose
a vector v € W, and remove it from Wj.

7) Compute v = NR, g(v). If v = 0, continue with
step 6).

8) Increase s’ by one, append gs» = v’ to the tuple G, and
append {(i,5") | 1 <i < s, v, = 75} to the set B. Continue
with step 6).

9) If B = () and W = (), return the tuple G and stop.

Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered tuple G =

(91,---,9s) whose elements are a homogeneous o-Grobner
basis of M.



The Buchberger Algorithm With Minimalization

1)Let B=0, W=V,G=10,s =0, and let Vinin = 0.

2) Let d be the smallest degree with respect to Lex of
an element in B or in W. Form the subset By = {(¢,7) € B |
degyy (0i;) = d} and the subtuple Wy of elements of degree d
in W, and delete their entries from B and W, respectively.

3) If B4 = 0, continue with step 6). Otherwise, choose a
pair (¢,j) € Bg and remove it from By.

4) Compute the S-vector S;; and its normal remainder
Si; = NRgyg(Sij). If S;; = 0, continue with step 3).

5) Increase s’ by one, append g, = S}, to the tuple G,
and append {(i,s') | 1 < i < §',79; = s} to the set B.
Continue with step 3).

6) If Wy = (), continue with step 9). Otherwise, choose
a vector v € W, and remove it from Wj.

7) Compute v = NR, g(v). If v = 0, continue with
step 6).

8) Increase s’ by one, append gs = v’ to G and v t0 Vin-
Append {(i,s") | 1 <i < §', v, = v} to the set B. Continue
with step 6).

9) If B =0 and W = (), return (G, Vmin) and stop.
Otherwise, continue with step 2).

This is an algorithm which returns a pair (G, Vmin) such
that G is a deg-ordered tuple of homogeneous vectors which
are a o-Grobner basis of M, and Vi, is a subtuple of V

which is a minimal system of generators of M.



Idealization of Modules

Definition. Let R be a ring and M an R-module. We equip

R x M with componentwise addition and the multiplication
(r,m)-(r',m")=(rv', rm' + 1" m)
In this way we get a ring R o« M. We call it the idealization

of M.

The canonical map (M) — R o« M identifies M with
an ideal (M) such that 1(M)? = 0.

Idealization of a graded free module.

F = @ P(—¢;) graded free P-module
i=1
P=Klzy,...,%y, €1,...,e;] polynomial ring
W = (W | é1,...,6,) multigrading on P
E ideal generated by {e;e; |1 <i<j<r}in P

Then the map ¢ : P x F — P/E defined by

(f,(91,---,97) — f+gie1t--+grer + E
is an isomorphism of graded rings.



Idealization of a Graded Submodule.

M C F graded submodule
V = (v1,...,vs) homogeneous system of generators of M
Under the map M «— P x M — P FL?/E, the

module M is identified with the residue class ideal of

Ing = (v1,...,05) + FE

Grobner Bases and Idealization.

T term ordering on T"

o module term ordering on T"(ey, . . ., e,-) which is compatible
with 7

o term ordering on T(x1,...,%n,€1,...,6-) Which extends
both 7 and o

G (reduced) o-Grobner basis of M

Then G U {eje; | 1 < i < j < r}is a (reduced) o-

Grobner basis of I,,.



Minimal Generators and Idealization.

Suppose that M C (x1,...,z,)F.
V = (v1,...,vs) minimal homogeneous system of generators
of M

Then {v1,...,vs} U {eje; | 1 <¢<j <r}isaminimal

homogeneous system of generators of I;.

Homogeneous Presentations.

n; = degy (v;) fori=1,...,s
F'= @ P(—n;) graded free P-module
i=1
14 w / ¥
F" — FF — M — 0
where ¢(¢;) = v; fori =1,...,s, where F" is a further graded
free P-module, and where 1 is a homogeneous P-linear map.

If this sequence is exact, it is called a homogeneous

presentation of M.

P= Klzi,...,Tn, €1,...,€r, €1,...,€s| polynomial ring

W = (W |61,...,6r|m,...,ns) defines a multigrading on P
E = (ei€;)i + (ex€r)k,e + (€u€r),,, ideal in P

If (f1,.-.,fs)is asyzygy of (v1,...,vs), then the correspond-

ing element fie; + --- 4+ fses of P is contained in the ideal

(’Ul —61,...,7)3—63).



Idealization of a Homogeneous Presentation.

The ideal Iy = (v1 —€1,...,V5 — €s) —I—E of P is called

the idealization of the presentation of M given above.

a) There exists a unique P-algebra homomorphism

®: Pler, ... ¢es)/(€i€j)ij=1..s — Ple1,...,er]/(€iej)ij=1.r

which maps the residue class of ¢; to the residue class of v;
fori=1,...,s.

b) The image of ® is the idealization of M.

c) Let Ips be the ideal in Pley,...,e,| obtained by sub-
stituting ¢; — 0 for ¢ = 1,...,s in Ip;. Then the ideal-
ization of M is the residue class ideal of Ij; in the ring
Ple1, ... er]/(€i€))ij=1,...r-

d) The kernel of & is the idealization of Syzp (V).

e) The idealization of Syzp (V) corresponds to the residue

class ideal of Ins N Pleq, ..., €] in Plex, ..., €s]/(€i€;)ij=1..5-

The above homogeneous presentation of M is called minimal

if it is of the form

Smin vmin
Flomms p s Mo — 0
where Vpin iS @ minimal homogeneous system of generators
of M and where Sy, is a minimal homogeneous system of

generators of Syz(V).



Computing Idealized Minimal Presentations

M CF =@ P(—0;), where 0; >pex 0 fori=1,...,r
i=1
V = (vy,...,vs) deg-ordered non-zero homogeneous genera-

tors of M such that n; = degy, (vj) >Lex O for j=1,...,s
o elimination ordering for {ej,...,e,}
1) Form the ideal Iy; = (v1 — €q,...,vs —€5) + E in P.
2) Modify the Buchberger Algorithm with Minimaliza-
tion such that it starts with W = (v1 — €1,...,05 — €),
G =GCmin =E&,and s’ =72 —r+rs+s2—s. Useitto
compute a pair of tuples (G, Gmin) such that G is a homo-
geneous o-Grobner basis of Iy and Gy is a homogeneous

minimal system of generators of Iyy.

3) Let g1,...,g, be the vectors in Gmin which are linear
formsineq,...,e., €1,...,€s and which contain at least one of
the indeterminates ey,...,e.. For i =1,..., u, let g; be the

polynomial obtained by substituting €; — 0 for j =1,...,s
in g;. Form the tuple G = (g1,...,9,)-

4) Let hy, ..., h, be the vectors in Gy,;, which are linear
forms in eq,...,e,, €1,...,€6s and which contain none of the
indeterminates ey, ..., e,. Form the tuple S = (hy,...,h,).

5) Return the pair (G,S) and stop.

This is an algorithm which returns a deg-ordered tuple G
of homogeneous vectors in F' which generate M minimally

and a deg-ordered tuple S of homogeneous vectors in F' =

P P(—n;) which generate Syzp()) minimally.
i=1
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Applications and Further Developments.

e One can apply to this algorithm all optimizations of the
usual homogeneous Buchberger Algorithm, e.g. the optimized
version described in
M. Caboara, M.K, and L. Robbiano, Efficiently computing

minimal sets of critical pairs, preprint 2002.

e Using this description of the computation of the syzygy
module, one can study totally useless critical pairs, i.e.
critical pairs which reduce to zero during the Grobner basis
computation and which have the additional property that
the syzygies they produce are not minimal generators of the

syzygy module.

e One can extend the methods of this algorithm to com-
pute the whole graded free resolution using one application
of the multihomogeneous Buchberger algorithm (horizontal

strateqy)
The problem with this approach is that one does not

know in advance how many additional indeterminates one

needs for the higher syzygy modules.
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e In order to further compactify the computation, M.
Caboara and C. Traverso (work in progress) have succeeded
to incorporate the whole computation in a polynomial ring
P = K]|xy,...,%y,d,e,s] which requires only three additional
indeterminates which roughly correspond to:

— s is the position of the module in the free resolution
— d is the multidegree of the corresponding standard
basis vector

— €' is the corresponding standard basis vector

This technique requires subtle extensions of the usual

theory of module term orderings.
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