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1. What is Idealization of Modules?

Let R be a ring and M an R-module. We turn the set

R x M into a ring by componentwise addition and
(r,m) - (r',m") = (rr’,rm’ + r'm)
This ring is called the idealization of M.
Remarks. a) The image of M in R x M under the injective
map ¢ : M — R x M defined by m — (0,m) is an ideal.
b) The ideal 2(M) satisfies 1(M)? = 0.

c¢) Given an R-submodule N C M, the inclusion Rx N C

R x M is an injective ring homomorphism.

d) Let I' be a monoid, let R be I'-graded, and let M be
a I'-graded R-module. Then R x M is a I'-graded ring via
(RxM)~y = Ryx M, forally € I, and «(M ) is a homogeneous

ideal in this ring.



2. Idealization of Graded Submodules

K field

P = K|x1,...,xy,| polynomial ring

P is graded by a positive matrix W € Mat,, ,(Z)

degyy (2;) >Leq 0 is the i" column of W

doi,...,do. € Z™

Fy = é P(—dy;) graded free P-module

M C }7:01 graded submodule

YV = (v1,...,vs) deg-ordered tuple of non-zero homoge-

neous vectors which generate M

Proposition 1. (Idealization of a Free Module)

The map ¢ : P x Fy — P/e which sends (f,(g1,...,9.)) to
the residue class of f + g1e; + - -+ + g,e, is an isomorphism
of graded rings. Here we equip P = K[x1,...,Tp,€1,...,¢.]

with the grading given by W = (W | dg1 -+ do,) and e is

the ideal generated by

E={eej|1<i<j<r}CcP



Proposition 2. (Idealization of a Graded Submodule)
Under the composition M L PxM<— PxF, , P/e,
the module M is identified with the residue class ideal of
Iy = (v1,...,05) +e.

The ideal I, is called the (idealization) ideal of M.

Questions. a) How do Grobner bases behave under this

process?

b) How are minimal homogeneous systems of generators

of M and I, related to each other?

c) Can the syzygy module Syz (V) be computed using

idealization?

d) What are the advantages of using the idealization

ideal I,; instead of M?



3. Grobner Bases and Idealization

Let 7 be a term ordering on T", the monoid of terms
in P.

Let o be a module term ordering on T" (e, . .., e,) which
is compatible with 7, i.e. such that ¢ >, ¢/ implies te; >, t' e;
fore=1,...,r.

Let @ be a term ordering on T(x1,...,Zpn,€1,...,€)

which extends both o and 7.

Proposition 3. (Grobner Bases and Idealization)
a) Let G be a o-Grobner basis of M. Then GU F is a

o-Grobner basis of I,y.

b) Let G be the reduced o-Grobner basis of M. Then

the reduced o-Grobner basis of I, is

G U {eiej ek | €i, €5 Qf LTJ(M)}

In particular, the reduced o-Grobner basis of I, is GUE
if M g (a:*l,...,:vn)FO.



4. Idealization and Minimal Homogeneous (Generators

Assume that M C (x1,...,x,) Fo.

Let do; >rer 0fori =1,...,7r. (Then P is positively graded.)
Let & = (e1e1,€1€9,...,€165,€2€2,€2€3,...,€2€0, ..., €1€.)
Proposition 4. (Idealization and Minimal Generators)

a) Let V be a minimal set of generators of M. Then the
set {v1,...,vs} U E is a minimal set of generators of Iy;.

b) If we apply Buchberger’s Algorithm with Minimaliza-
tion (BAM) to the tuple (V | £), it computes a minimal sys-
tem of generators of the ideal Ip; C P of the form (Vi | €),
where Vi is a minimal set of generators of M. In particular,
the elements of £ are minimal generators of Ij,.

c¢) If we apply the variant of BAM to the tuple (V | £), it
computes a homogeneous o-Grobner basis of I;; of the form
(G | £) and a minimal set of generators of the form (G, | £),
where G is a o-Grobner basis of M and G,,;, 1S @ minimal set

of generators of M which is contained in G.



The Buchberger Algorithm with Minimalization

Let B=0, W=V,G=0,s" =0, and Vppin = 0.

2) Let d be the smallest degree with respect to Lex of
an element in B or in W. Form the subset By = {(i,j) € B |
degy (0i;) = d} and the subtuple Wy of elements of degree d
in W, and delete their entries from B and W, respectively.

3) If B4 = (), continue with step 6). Otherwise, choose a
pair (i,7) € By and remove it from Bj.

4) Compute the S-vector S;; and its normal remainder
Si; = NRy g(Sij). If Si; = 0, continue with step 3).

5) Increase s’ by one, append gy = S}, to the tuple G,
and append {(i,5") | 1 < i < ¢, v = 7s} to the set B.
Continue with step 3).

6) If W, = 0, continue with step 9). Otherwise, choose
a vector v € W, and remove it from W;.

7) Compute v/ = NR, g(v). If v/ = 0, continue with
step 6).

8) Increase s’ by one, append gy = v' to the tuple G,
append v to the tuple Vi, and append {(i,s') | 1 < i <
s, vi = s } to the set B. Continue with step 6).

9) If B =0 and W = 0, return the pair (G, Vmin) and

stop. Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered tuple G =
(g1,---,9s) whose elements are a homogeneous o-Grobner
basis of M and a deg-ordered minimal system of generators
Vmin of M which is a subtuple of V.



The Variant of BAM

DLet B=0,W=V,G=0,s" =0, and Gpin = 0.

2) Let d be the smallest degree with respect to Lex of
an element in B or in W. Form the subset By = {(i,j) € B |
degy (0i5) = d} and the subtuple Wy of elements of degree d
in W, and delete their entries from B and W, respectively.

3) If B4 = (), continue with step 6). Otherwise, choose a
pair (i,7) € By and remove it from Bj.

4) Compute the S-vector S;; and its normal remainder
Si; = NRy g(Sis). If Si; = 0, continue with step 3).

5) Increase s’ by one, append gy = S}, to the tuple G,
and append {(i,5") | 1 < i < ¢, v = 7s} to the set B.
Continue with step 3).

6) If W, = 0, continue with step 9). Otherwise, choose
a vector v € W, and remove it from W;.

7) Compute v/ = NR,g(v). If v/ = 0, continue with
step 6).

8) Increase s’ by one, append gy = v’ to the tuples G
and Gin, and append {(i,s") | 1 < i < s, vy = 75} to the
set B. Continue with step 6).

9) If B = and W = (), return the pair (G, Gmin) and
stop. Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered homoge-

neous o-Groébner basis G = (¢1,...,9s) of M and a subtu-

ple Gmin of G which generates M minimally.



5. Idealization of a Homogeneous Presentation

(0 ¥
If F5 Fy M — 0 is a homogeneous presenta-

tion of M and d € Z™, then

'QE ~
Fo(d) —— Fi(d) —— M(d) — 0
is a homogeneous presentation of M(d). Therefore we shall

from now on assume dg; >re, 0 fore=1,...,r. In particular,

P is then positively graded by W.

YV = (vy1,...,0s) is a deg-ordered homogeneous tuple
which generates M

dy; = degyy (v5) >pex O fori=1,...,s

F = ESB P(—dy;) graded free P-module

{e1, . .Z.Z,les} canonical basis of F

Syzp (V) is a graded submodule of Fy

~

P=Klxy,...,xp,€1,...,€p,€1,...,€s] is positively

——

graded by W = (W ’ d01 c 'dor ‘ dll c °d13).



Proposition 5. (Idealization of a Presentation)
a) The idealization of Fy @ F; the ring P/¢, where ¢ is

the ideal generated by {e;e;} U {ei€;} U {€i€;}.

b) If (f1,...,fs) € Syzp(V) is a homogeneous syzygy
of V), then the corresponding element fie; 4+ --- + fges of P
is contained in the ideal (v; —€1,...,v5 — €5).

The ideal I; = (v1 — €1,...,0s — €5) + ¢ in P is called

the ideal of the presentation of M.

c) There exists a unique P-algebra homomorphism
D . P[El, ceey Es]/(eiej)i,jzl,...,s — F/e

which maps the residue class of ¢; tov; +efori=1,...,s.

d) The image of ® is the residue class ideal of the ideal
of M.

e) The kernel of ® is the residue class ideal of the ideal
of Syzp (V).

f) The ideal of Syzp (V) is given by In; N Pley, ..., €.



6. Computing Minimal Presentations Vertically

1) Choose a term ordering o on T"(e1,...,e.). Let
B=0,W=V,G=0,¢=0,Guin=0, u=0,and S = (.

2) Let d be the smallest degree with respect to Lex of an
element in B or in VV. Form the subset B; and the subtu-
ple W,, and delete their entries from B and VW, respectively.

3) If B4y = 0, continue with step 6). Otherwise, chose a
pair (i,7) € By and remove it from Bj.

4) Compute the S-vector S;; of g; and g;. Then compute
Sii = NRg,g(Si). If S;; = 0 continue with step 3). If 57, # 0
and it does not involve the indeterminates eq,...,e,, then
append it to S and continue with step 3).

5) Increase s’ by one, append g, = S}, to the tuple G,
and append the set {(i,5") | 1 <i < s, 7, = vs} to B. Then
continue with step 3).

6) If Wy = ), continue with step 9). Otherwise, choose
a vector v € W, and remove it from Wj.

7) Compute v' = NR,g(v) and v = v'|¢,;~0. If ¥ = 0,
continue with step 6).

8) Increase s’ and p by one. Adjoin a new indetermi-
nate €, to P and extend the grading to this new ring by
defining degy;7(€,) = degy(v). Extend the term ordering o
to the new ring in such a way that the extension is an elim-
ination ordering for {e;,...,e,}. Append g4 =0 —¢€, to G
and ¥ to Guin. Append the set {(i,8") |1 <i <&, v =7s}
to B. Continue with step 6).
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9) If B #£ () or W # (), continue with step 2).

10) Apply the Buchberger Algorithm with Minimaliza-
tion to the module generated by S and obtain a subtuple
Smin 0f & which minimally generates that module. Return

the pair (Gmin, Smin) and stop.

This is an algorithm which computes a pair (Gumin, Smin) such
that Gmin is a deg-ordered tuple of homogeneous vectors in Fj

which generate M minimally, and such that S, is a deg-

m
ordered tuple of homogeneous vectors in €@ P(—dy;) which
i=1
generate Syzp(Gmin) minimally.
Here p is the number of elements in G.i, and dy; is the

degree of the i*™" element in Guin for i =1,..., .
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7. Computing Minimal Presentations Horizontally

1) Choose a term ordering o on T"(e1,...,e.). Let
B=0,B=0W=V,G=0,5 =0, Gnin =0, p =0,
S=10,s" =0, and Sy, = 0.

2) Let d be the smallest degree with respect to Lex of
an element in B U B’ or in W. Form the subset B, of B,
the subset B/, of B’, the subtuple W, of W, and delete their
entries from B, B’, and W, respectively.

3) If B, = (), continue with step 6). Otherwise, choose a
pair (i,5) € B/, and remove it from BJ.

4) Compute the S-vector of h; and h; and call it S;;.
Then compute the normal remainder S;; = NR; s(S;5). If
Si; = 0, continue with step 3).

5) Increase s” by one, append hg» = S}, to the tuple S,
append the set {(i,s"”) | 1 <i < s", n; = ns} to B, and
continue with step 3).

6) If By = (), continue with step 10). Otherwise, choose
a pair (i,7) € By and remove it from Bj.

7) Compute the S-vector of g; and g; and call it S;;.
Then compute the normal remainder S}; = NR, g(S5;;). If S},
involves one of the indeterminates eq, ..., e,, then increase s’
by one, append gy = Sj; to G, append {(i,s’) | 1 < i <
s',v; = v} to B, and continue with step 6).

8) Compute the normal remainder S}, = NRg s(S5;;).
If S = 0, continue with step 6).
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9) Increase s” by one. Append hg» = S}’ to the tuples S
and Spin- Append {(i,s") | 1 < i < §", n; = ns} to B'.
Continue with step 6).

10) If W4 = (), continue with step 13). Otherwise, choose
a vector v € W, and remove it from W;.

11) Compute v' = NR, g(v) and v = v'|¢,~0. If v = 0,
continue with step 10).

12) Increase s’ and p by one. Adjoin a new indeter-
minate €, to P and extend the grading to this new ring by
defining deg-(€,) = degy-(v”). Extend the term ordering o
to the new ring in such a way that the extension is an elimi-
nation ordering for {e;,...,e,}. Append go =¥ — ¢, to the
tuple G and ¥ to Guin. Append {(i,8") |1 <i <, v, =7s}
to B. Continue with step 10).

13) If B = B = () and W = (), then return the pair
(Gmin, Smin) and stop. Otherwise, continue with step 2).

This is an algorithm which computes a pair (Gmin, Smin) such
that Gnin is a deg-ordered tuple of homogeneous vectors in Fj

which generate M minimally, and such that S, is a deg-

m
ordered tuple of homogeneous vectors in @ P(—d;;) which
i=1
generate Syzp(Gmin) minimally.

Here p is the number of elements in G,;, and dy; is the

degree of the i*" element in G, for i =1,. .., .

13



8. Idealization of Minimal Graded Free Resolutions

Let V = (v1,...,vs) be a deg-ordered tuple of homogeneous
TQ

vectors generating a P-submodule M of Fy = @ P(—dy;).
i=1

The graded free resolution of M has the shape

0 Fg 903 Fg_1—>'°- F1 o FO o M 0

where Fy, ..., F) are finitely generated graded free P-modules
and for every i € {1,...,¢} the homogeneous homomor-
phism ¢; maps the canonical basis of F; to a minimal ho-
mogeneous system of generators of Ker(y;_1).

Recall that ¢ < n.

We may assume that dg; >re. 0 fore=1,..., 7.

We write Fz = Eé P(—dw)
j=1
The canonical basis {egz), e 67(:?} of F; is always kept

deg-ordered.

Remarks. a) The idealization of Fo & F; & --- @ F,, is a

residue class ring of the polynomial ring

~

P=K[{" |ie{0,....,n},je{1,...,r:}}]

b) The elements of F; can be identified with their images

~

in P.
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9. Computing Minimal Resolutions Vertically

1) Let i = 0. Equip P = P[egi), e 67@] with the grading
defined by W = (W | d;1 - -+ d;y,). Choose a term ordering o
on T\, ... ). Let B=0, W =V,G =10, s =0,
GY) =0, i1 =0, and S = 0.

2) Let d be the smallest degree with respect to Lex of an
element in B or in VV. Form the subset B; and the subtu-
ple Wy, and delete their entries from B and W, respectively.

3) If By = 0, continue with step 6). Otherwise, chose a
pair (j, k) € By and remove it from Bj.

4) Form the S-vector S;i of g; and g. Then compute

't = NRg,g(Sjx). If 5%, = 0 continue with step 3). If 5%, #
0 and it does not involve the indeterminates egi), e eg), then
append it to S and continue with step 3).

5) Increase s’ by one, append g = 57, to the tuple G,
and append the set {(j,s') | 1 < j < s, v = v¢} to B.
Then continue with step 3).

6) If W, = 0, continue with step 9). Otherwise, choose
a vector v € W, and remove it from W;.

7) Compute v' = NR, g(v) and v = o'

continue with step 6).

6§¢+1)'_>0. Ifv= O,

8) Increase s’ and r;51 by one. Adjoin a new indetermi-

nate 67(}1_3 ) to P and extend the grading to this new ring by

defining degW(e%i}l )) = degy7(v). Extend the term order-
ing o to the new ring in such a way that the extension is an

elimination ordering for {egi), e eg)} Append the element

15



gy = U — 67(}111) to § and the element v to G

the set {(j,s") | 1 < j < s, v; = 7+ } to B. Continue with
step 6).

9) If B #£ () or W # (), continue with step 2).

10) If S # 0, then increase i by one and equip P =
P[egi), e eq(f)] with the grading defined by the matrix W =
(W | dij1 -+ dypr,). Restrict o to T”(e&i), e 67(«2)) Let B = (),
W=S,G=0,s =0, g9 =0, 7,01 =0, and S = (). Then

min

(4)

min*

Append

continue with step 2).
11) Let £ =i+ 1. Return the list (g(o) - .,Q(e_l)) and

min’ min

stop.

This is an algorithm which computes a list of deg-ordered
(0) (5_1)) such that the P-

homogeneous matrices (G, ,...,G;

linear maps ¢; : I; — F;_1 given by Qr(gi;l) forg=1,...,¢

yield a minimal graded free resolution

0—F—p L 2 2 2w

16



9. Computing Minimal Resolutions Horizontally

1) Let o be a term ordering on T”(ego), e 67(«2)), let P =
Ple?, ..., %] be graded by W = (W | do1 -+ don,), let
ri=---=1r,=0,let B={vy,...,0s}, let G =0, and let
Grnin = 0.

2) Let d be the smallest degree with respect to Lex of

an element of B. Form the subset B; of B and remove it
from B.

3) If By = (), continue with step 7). Otherwise, let i
be the largest upper index of an indeterminate e,(f ) occuring
in a polynomial of By. Let f € By be a polynomial which

involves that indeterminate. Remove f from Bg.

4) Compute f' = HR, g(f). If one of the indetermi-

gi_l), Cee egj) occurs in f’, append f’ to G, append

nates €
to B all S-polynomials of f/ and a polynomial ¢ in G such
that LT, (f’) and LT, (g) involve the same egi_l), and con-
tinue with step 3).

5) If none of the indeterminates {egi), . .,eq(n?} occurs
in f’, continue with step 3).

6) Increase r; 11 by one. Adjoin an indeterminate eq(fi_ll )
to P and extend the grading to this new ring by defining
degW(egi_ll )) = d. Extend the term ordering o to the new
ring in such a way that the extension is an elimination order-

ing for {ego), e eq(f)} Compute the polynomial

?:f’(wl,...,a:n,egi),...,eg),O,...,O)

17



Append g = f— esfjtll) to G and f to Umin. For all h € B such
that LT, (g) and LT, (k) involve the same indeterminate e§i),
compute the S-polynomial of ¢ and A and append it to B.
Then continue with step 3).

7) If B = (), return the tuple Gin and stop. Otherwise,

continue with step 2).

This is an algorithm which computes a deg-ordered tuple Gyin

of homogeneous polynomials in

P:P[Gg()))'" 6(0) "'7€§£)7"'7€7(“?]

9 ’)"07

such that the homogeneous maps of graded free P-modules
©; « I, — F;_1 defined by the elements of QﬂP[egi), e eff)]

yield a minimal graded free resolution

pe— 2
0—F—F— . 2 2 20
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Summary and Conclusions

e For submodules of graded free modules the presenta-

tion of the idealization was described explicitly.

e We have determined the relation between the module
and its idealization with respect to their Grobner bases and

with respect to minimal homogeneous sets of generators.

e We can idealize a homogeneous presentation and even

a graded free resolution of the module.

e The computation of a minimal homogeneous presen-
tation or a graded free resolution is then nothing but the
computation of one Grobner basis for the ideal representing

the idealization.

e (Classical strategies for computing resolutions corre-
spond to different selection strategies for this Grobner basis

computation.

e The horizontal strategy corresponds to a particularly

brief algorithm.

e All standard optimizations (avoiding unnecessary crit-

ical pairs, Hilbert driven, ...) can be applied.
e It is easy to analyze which operations have to be im-

plemented efficiently to speed up the computation.

If you can’t realize your ideal,
idealize the real.

(Marriage Counsel)
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