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1. What is Idealization of Modules?

Let R be a ring and M an R-module. We turn the set

R × M into a ring by componentwise addition and

(r, m) · (r′, m′) = (rr′, rm′ + r′m)

This ring is called the idealization of M .

Remarks. a) The image of M in R×M under the injective

map ı : M −→ R × M defined by m 7→ (0, m) is an ideal.

b) The ideal ı(M) satisfies ı(M)2 = 0.

c) Given an R-submodule N ⊆ M , the inclusion R×N ⊆

R × M is an injective ring homomorphism.

d) Let Γ be a monoid, let R be Γ-graded, and let M be

a Γ-graded R-module. Then R × M is a Γ-graded ring via

(R×M)γ = Rγ×Mγ for all γ ∈ Γ, and ı(M) is a homogeneous

ideal in this ring.
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2. Idealization of Graded Submodules

K field

P = K[x1, . . . , xn] polynomial ring

P is graded by a positive matrix W ∈ Matm,n(Z)

degW (xi) >Lex 0 is the ith column of W

d01, . . . , d0r ∈ Z
m

F0 =
r⊕
i=1

P (−d0i) graded free P -module

M ⊆ F0 graded submodule

V = (v1, . . . , vs) deg-ordered tuple of non-zero homoge-

neous vectors which generate M

Proposition 1. (Idealization of a Free Module)

The map ϕ : P × F0 −→ P/e which sends (f, (g1, . . . , gr)) to

the residue class of f + g1e1 + · · · + grer is an isomorphism

of graded rings. Here we equip P = K[x1, . . . , xn, e1, . . . , er]

with the grading given by W = (W | d01 · · · d0r) and e is

the ideal generated by

E = {eiej | 1 ≤ i ≤ j ≤ r} ⊆ P
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Proposition 2. (Idealization of a Graded Submodule)

Under the composition M
ı

−−→P ×M ↪−→ P ×F0

ϕ

−−→P/e,

the module M is identified with the residue class ideal of

IM = (v1, . . . , vs) + e.

The ideal IM is called the (idealization) ideal of M .

Questions. a) How do Gröbner bases behave under this

process?

b) How are minimal homogeneous systems of generators

of M and IM related to each other?

c) Can the syzygy module SyzP (V) be computed using

idealization?

d) What are the advantages of using the idealization

ideal IM instead of M?
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3. Gröbner Bases and Idealization

Let τ be a term ordering on T
n, the monoid of terms

in P .

Let σ be a module term ordering on T
n〈e1, . . . , er〉 which

is compatible with τ , i.e. such that t ≥τ t′ implies t ei ≥σ t′ ei

for i = 1, . . . , r.

Let σ be a term ordering on T(x1, . . . , xn, e1, . . . , er)

which extends both σ and τ .

Proposition 3. (Gröbner Bases and Idealization)

a) Let G be a σ-Gröbner basis of M . Then G ∪ E is a

σ-Gröbner basis of IM .

b) Let G be the reduced σ-Gröbner basis of M . Then

the reduced σ-Gröbner basis of IM is

G ∪ {eiej ∈ E | ei, ej /∈ LTσ(M)}

In particular, the reduced σ-Gröbner basis of IM is G∪E

if M ⊆ (x1, . . . , xn) F0.
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4. Idealization and Minimal Homogeneous Generators

Assume that M ⊆ (x1, . . . , xn) F0.

Let d0i >Lex 0 for i = 1, . . . , r. (Then P is positively graded.)

Let E = (e1e1, e1e2, . . . , e1er, e2e2, e2e3, . . . , e2er, . . . , erer)

Proposition 4. (Idealization and Minimal Generators)

a) Let V be a minimal set of generators of M. Then the

set {v1, . . . , vs} ∪ E is a minimal set of generators of IM .

b) If we apply Buchberger’s Algorithm with Minimaliza-

tion (BAM) to the tuple (V | E), it computes a minimal sys-

tem of generators of the ideal IM ⊆ P of the form (Vmin | E),

where Vmin is a minimal set of generators of M . In particular,

the elements of E are minimal generators of IM .

c) If we apply the variant of BAM to the tuple (V | E), it

computes a homogeneous σ-Gröbner basis of IM of the form

(G | E) and a minimal set of generators of the form (Gmin | E),

where G is a σ-Gröbner basis of M and Gmin is a minimal set

of generators of M which is contained in G.
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The Buchberger Algorithm with Minimalization

1) Let B = ∅, W = V , G = ∅, s′ = 0, and Vmin = ∅.

2) Let d be the smallest degree with respect to Lex of

an element in B or in W . Form the subset Bd = {(i, j) ∈ B |

degW (σij) = d} and the subtuple Wd of elements of degree d

in W , and delete their entries from B and W , respectively.

3) If Bd = ∅, continue with step 6). Otherwise, choose a

pair (i, j) ∈ Bd and remove it from Bd.

4) Compute the S-vector Sij and its normal remainder

S′
ij = NRσ,G(Sij). If S′

ij = 0, continue with step 3).

5) Increase s′ by one, append gs′ = S′
ij to the tuple G,

and append {(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B.

Continue with step 3).

6) If Wd = ∅, continue with step 9). Otherwise, choose

a vector v ∈ Wd and remove it from Wd.

7) Compute v′ = NRσ,G(v). If v′ = 0, continue with

step 6).

8) Increase s′ by one, append gs′ = v′ to the tuple G,

append v to the tuple Vmin, and append {(i, s′) | 1 ≤ i <

s′, γi = γs′} to the set B. Continue with step 6).

9) If B = ∅ and W = ∅, return the pair (G,Vmin) and

stop. Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered tuple G =

(g1, . . . , gs′) whose elements are a homogeneous σ-Gröbner

basis of M and a deg-ordered minimal system of generators

Vmin of M which is a subtuple of V .
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The Variant of BAM

1) Let B = ∅, W = V , G = ∅, s′ = 0, and Gmin = ∅.

2) Let d be the smallest degree with respect to Lex of

an element in B or in W . Form the subset Bd = {(i, j) ∈ B |

degW (σij) = d} and the subtuple Wd of elements of degree d

in W , and delete their entries from B and W , respectively.

3) If Bd = ∅, continue with step 6). Otherwise, choose a

pair (i, j) ∈ Bd and remove it from Bd.

4) Compute the S-vector Sij and its normal remainder

S′
ij = NRσ,G(Sij). If S′

ij = 0, continue with step 3).

5) Increase s′ by one, append gs′ = S′
ij to the tuple G,

and append {(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B.

Continue with step 3).

6) If Wd = ∅, continue with step 9). Otherwise, choose

a vector v ∈ Wd and remove it from Wd.

7) Compute v′ = NRσ,G(v). If v′ = 0, continue with

step 6).

8) Increase s′ by one, append gs′ = v′ to the tuples G

and Gmin, and append {(i, s′) | 1 ≤ i < s′, γi = γs′} to the

set B. Continue with step 6).

9) If B = ∅ and W = ∅, return the pair (G,Gmin) and

stop. Otherwise, continue with step 2).

This is an algorithm which returns a deg-ordered homoge-

neous σ-Gröbner basis G = (g1, . . . , gs′) of M and a subtu-

ple Gmin of G which generates M minimally.
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5. Idealization of a Homogeneous Presentation

If F2

ψ

−−→F1

ϕ

−−→M −→ 0 is a homogeneous presenta-

tion of M and d ∈ Z
m, then

F2(d)
ψ̃

−−→ F1(d)
ϕ̃

−−→ M(d) −→ 0

is a homogeneous presentation of M(d). Therefore we shall

from now on assume d0i >Lex 0 for i = 1, . . . , r. In particular,

P is then positively graded by W .

V = (v1, . . . , vs) is a deg-ordered homogeneous tuple

which generates M

d1i = degW (vi) >Lex 0 for i = 1, . . . , s

F1 =
s⊕
i=1

P (−d1i) graded free P -module

{ε1, . . . , εs} canonical basis of F1

SyzP (V) is a graded submodule of F1

P̃ = K[x1, . . . , xn, e1, . . . , er, ε1, . . . , εs] is positively

graded by W̃ = (W | d01 · · · d0r | d11 · · · d1s).
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Proposition 5. (Idealization of a Presentation)

a) The idealization of F0 ⊕ F1 the ring P̃ /ẽ, where ẽ is

the ideal generated by {eiej} ∪ {eiεj} ∪ {εiεj}.

b) If (f1, . . . , fs) ∈ SyzP (V) is a homogeneous syzygy

of V , then the corresponding element f1ε1 + · · · + fsεs of P̃

is contained in the ideal (v1 − ε1, . . . , vs − εs).

The ideal ĨM = (v1 − ε1, . . . , vs − εs) + ẽ in P̃ is called

the ideal of the presentation of M .

c) There exists a unique P -algebra homomorphism

Φ : P [ε1, . . . , εs]/(εiεj)i,j=1,...,s −→ P/e

which maps the residue class of εi to vi + e for i = 1, . . . , s.

d) The image of Φ is the residue class ideal of the ideal

of M .

e) The kernel of Φ is the residue class ideal of the ideal

of SyzP (V).

f) The ideal of SyzP (V) is given by ĨM ∩ P [ε1, . . . , εs].
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6. Computing Minimal Presentations Vertically

1) Choose a term ordering σ on T
n(e1, . . . , er). Let

B = ∅, W = V , G = ∅, s′ = 0, Gmin = ∅, µ = 0, and S = ∅.

2) Let d be the smallest degree with respect to Lex of an

element in B or in W . Form the subset Bd and the subtu-

ple Wd, and delete their entries from B and W , respectively.

3) If Bd = ∅, continue with step 6). Otherwise, chose a

pair (i, j) ∈ Bd and remove it from Bd.

4) Compute the S-vector Sij of gi and gj . Then compute

S′
ij = NRσ,G(Sij). If S′

ij = 0 continue with step 3). If S ′
ij 6= 0

and it does not involve the indeterminates e1, . . . , er, then

append it to S and continue with step 3).

5) Increase s′ by one, append gs′ = S′
ij to the tuple G,

and append the set {(i, s′) | 1 ≤ i < s′, γi = γs′} to B. Then

continue with step 3).

6) If Wd = ∅, continue with step 9). Otherwise, choose

a vector v ∈ Wd and remove it from Wd.

7) Compute v′ = NRσ,G(v) and v̄ = v′|εj 7→0. If v̄ = 0,

continue with step 6).

8) Increase s′ and µ by one. Adjoin a new indetermi-

nate εµ to P and extend the grading to this new ring by

defining deg
W

(εµ) = deg
W

(v̄). Extend the term ordering σ

to the new ring in such a way that the extension is an elim-

ination ordering for {e1, . . . , er}. Append gs′ = v̄ − εµ to G

and v̄ to Gmin. Append the set {(i, s′) | 1 ≤ i < s′, γi = γs′}

to B. Continue with step 6).
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9) If B 6= ∅ or W 6= ∅, continue with step 2).

10) Apply the Buchberger Algorithm with Minimaliza-

tion to the module generated by S and obtain a subtuple

Smin of S which minimally generates that module. Return

the pair (Gmin,Smin) and stop.

This is an algorithm which computes a pair (Gmin,Smin) such

that Gmin is a deg-ordered tuple of homogeneous vectors in F0

which generate M minimally, and such that Smin is a deg-

ordered tuple of homogeneous vectors in
µ⊕
i=1

P (−d1i) which

generate SyzP (Gmin) minimally.

Here µ is the number of elements in Gmin and d1i is the

degree of the ith element in Gmin for i = 1, . . . , µ.
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7. Computing Minimal Presentations Horizontally

1) Choose a term ordering σ on T
n(e1, . . . , er). Let

B = ∅, B′ = ∅, W = V , G = ∅, s′ = 0, Gmin = ∅, µ = 0,

S = ∅, s′′ = 0, and Smin = ∅.

2) Let d be the smallest degree with respect to Lex of

an element in B ∪ B′ or in W . Form the subset Bd of B,

the subset B′
d of B′, the subtuple Wd of W , and delete their

entries from B, B′, and W , respectively.

3) If B′
d = ∅, continue with step 6). Otherwise, choose a

pair (i, j) ∈ B′
d and remove it from B′

d.

4) Compute the S-vector of hi and hj and call it Sij .

Then compute the normal remainder S ′
ij = NRσ,S(Sij). If

S′
ij = 0, continue with step 3).

5) Increase s′′ by one, append hs′′ = S′
ij to the tuple S,

append the set {(i, s′′) | 1 ≤ i < s′′, ηi = ηs′′} to B′, and

continue with step 3).

6) If Bd = ∅, continue with step 10). Otherwise, choose

a pair (i, j) ∈ Bd and remove it from Bd.

7) Compute the S-vector of gi and gj and call it Sij .

Then compute the normal remainder S ′
ij = NRσ,G(Sij). If S′

ij

involves one of the indeterminates e1, . . . , er, then increase s′

by one, append gs′ = S′
ij to G, append {(i, s′) | 1 ≤ i <

s′, γi = γs′} to B, and continue with step 6).

8) Compute the normal remainder S ′′
ij = NRσ,S(S′

ij).

If S′′
ij = 0, continue with step 6).
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9) Increase s′′ by one. Append hs′′ = S′′
ij to the tuples S

and Smin. Append {(i, s′′) | 1 ≤ i < s′′, ηi = ηs′′} to B′.

Continue with step 6).

10) If Wd = ∅, continue with step 13). Otherwise, choose

a vector v ∈ Wd and remove it from Wd.

11) Compute v′ = NRσ,G(v) and v̄ = v′|εj 7→0. If v̄ = 0,

continue with step 10).

12) Increase s′ and µ by one. Adjoin a new indeter-

minate εµ to P and extend the grading to this new ring by

defining deg
W

(εµ) = deg
W

(v′). Extend the term ordering σ

to the new ring in such a way that the extension is an elimi-

nation ordering for {e1, . . . , er}. Append gs′ = v̄ − εµ to the

tuple G and v̄ to Gmin. Append {(i, s′) | 1 ≤ i < s′, γi = γs′}

to B. Continue with step 10).

13) If B = B′ = ∅ and W = ∅, then return the pair

(Gmin,Smin) and stop. Otherwise, continue with step 2).

This is an algorithm which computes a pair (Gmin,Smin) such

that Gmin is a deg-ordered tuple of homogeneous vectors in F0

which generate M minimally, and such that Smin is a deg-

ordered tuple of homogeneous vectors in
µ⊕
i=1

P (−d1i) which

generate SyzP (Gmin) minimally.

Here µ is the number of elements in Gmin and d1i is the

degree of the ith element in Gmin for i = 1, . . . , µ.
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8. Idealization of Minimal Graded Free Resolutions

Let V = (v1, . . . , vs) be a deg-ordered tuple of homogeneous

vectors generating a P -submodule M of F0 =
r0⊕
i=1

P (−d0i).

The graded free resolution of M has the shape

0 −→ F`
ϕ`

−−→F`−1 −→ · · · −→ F1

ϕ1

−−→F0

ϕ0

−−→M −→ 0

where F0, . . . , F` are finitely generated graded free P -modules

and for every i ∈ {1, . . . , `} the homogeneous homomor-

phism ϕi maps the canonical basis of Fi to a minimal ho-

mogeneous system of generators of Ker(ϕi−1).

Recall that ` ≤ n.

We may assume that d0i >Lex 0 for i = 1, . . . , r0.

We write Fi =
ri⊕
j=1

P (−dij).

The canonical basis {ε
(i)
1 , . . . , ε

(i)
ri } of Fi is always kept

deg-ordered.

Remarks. a) The idealization of F0 ⊕ F1 ⊕ · · · ⊕ Fn is a

residue class ring of the polynomial ring

P̃ = K[{ε
(i)
j | i ∈ {0, . . . , n}, j ∈ {1, . . . , ri}}]

b) The elements of Fi can be identified with their images

in P̃ .
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9. Computing Minimal Resolutions Vertically

1) Let i = 0. Equip P = P [ε
(i)
1 , . . . , ε

(i)
ri ] with the grading

defined by W = (W | di1 · · · diri
). Choose a term ordering σ

on T
n(ε

(i)
1 , . . . , ε

(i)
ri ). Let B = ∅, W = V , G = ∅, s′ = 0,

G
(i)
min = ∅, ri+1 = 0, and S = ∅.

2) Let d be the smallest degree with respect to Lex of an

element in B or in W . Form the subset Bd and the subtu-

ple Wd, and delete their entries from B and W , respectively.

3) If Bd = ∅, continue with step 6). Otherwise, chose a

pair (j, k) ∈ Bd and remove it from Bd.

4) Form the S-vector Sjk of gj and gk. Then compute

S′
jk = NRσ,G(Sjk). If S′

jk = 0 continue with step 3). If S ′
jk 6=

0 and it does not involve the indeterminates ε
(i)
1 , . . . , ε

(i)
ri , then

append it to S and continue with step 3).

5) Increase s′ by one, append gs′ = S′
jk to the tuple G,

and append the set {(j, s′) | 1 ≤ j < s′, γj = γs′} to B.

Then continue with step 3).

6) If Wd = ∅, continue with step 9). Otherwise, choose

a vector v ∈ Wd and remove it from Wd.

7) Compute v′ = NRσ,G(v) and v̄ = v′|
ε
(i+1)
j

7→0
. If v̄ = 0,

continue with step 6).

8) Increase s′ and ri+1 by one. Adjoin a new indetermi-

nate ε
(i+1)
ri+1 to P and extend the grading to this new ring by

defining deg
W

(ε
(i+1)
ri+1 ) = deg

W
(v̄). Extend the term order-

ing σ to the new ring in such a way that the extension is an

elimination ordering for {ε
(i)
1 , . . . , ε

(i)
ri }. Append the element
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gs′ = v̄ − ε
(i+1)
ri+1 to G and the element v̄ to G

(i)
min. Append

the set {(j, s′) | 1 ≤ j < s′, γj = γs′} to B. Continue with

step 6).

9) If B 6= ∅ or W 6= ∅, continue with step 2).

10) If S 6= 0, then increase i by one and equip P =

P [ε
(i)
1 , . . . , ε

(i)
ri ] with the grading defined by the matrix W =

(W | di1 · · · diri
). Restrict σ to T

n(ε
(i)
1 , . . . , ε

(i)
ri ). Let B = ∅,

W = S, G = ∅, s′ = 0, G
(i)
min = ∅, ri+1 = 0, and S = ∅. Then

continue with step 2).

11) Let ` = i + 1. Return the list (G
(0)
min, . . . ,G

(`−1)
min ) and

stop.

This is an algorithm which computes a list of deg-ordered

homogeneous matrices (G
(0)
min, . . . ,G

(`−1)
min ) such that the P -

linear maps ϕj : Fj −→ Fj−1 given by G
(j−1)
min for j = 1, . . . , `

yield a minimal graded free resolution

0 −→ F`
ϕ`

−−→F`−1

ϕ`−1

−−→· · ·
ϕ3

−−→F2

ϕ2

−−→F1

ϕ1

−−→M −→ 0
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9. Computing Minimal Resolutions Horizontally

1) Let σ be a term ordering on T
n(ε

(0)
1 , . . . , ε

(0)
r0 ), let P =

P [ε
(0)
1 , . . . , ε

(0)
r0 ] be graded by W = (W | d01 · · · d0r0), let

r1 = · · · = rn = 0, let B = {v1, . . . , vs}, let G = ∅, and let

Gmin = ∅.

2) Let d be the smallest degree with respect to Lex of

an element of B. Form the subset Bd of B and remove it

from B.

3) If Bd = ∅, continue with step 7). Otherwise, let i

be the largest upper index of an indeterminate ε
(j)
k occuring

in a polynomial of Bd. Let f ∈ Bd be a polynomial which

involves that indeterminate. Remove f from Bd.

4) Compute f ′ = HRσ,G(f). If one of the indetermi-

nates ε
(i−1)
1 , . . . , ε

(i−1)
ri−1 occurs in f ′, append f ′ to G, append

to B all S-polynomials of f ′ and a polynomial g in G such

that LTσ(f
′) and LTσ(g) involve the same ε

(i−1)
j , and con-

tinue with step 3).

5) If none of the indeterminates {ε
(i)
1 , . . . , ε

(i)
ri } occurs

in f ′, continue with step 3).

6) Increase ri+1 by one. Adjoin an indeterminate ε
(i+1)
ri+1

to P and extend the grading to this new ring by defining

deg
W

(ε
(i+1)
ri+1 ) = d. Extend the term ordering σ to the new

ring in such a way that the extension is an elimination order-

ing for {ε
(0)
1 , . . . , ε

(i)
ri }. Compute the polynomial

f = f ′(x1, . . . , xn, ε
(i)
1 , . . . , ε(i)ri

, 0, . . . , 0)
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Append g = f −ε
(i+1)
ri+1 to G and f to Gmin. For all h ∈ B such

that LTσ(g) and LTσ(h) involve the same indeterminate ε
(i)
j ,

compute the S-polynomial of g and h and append it to B.

Then continue with step 3).

7) If B = ∅, return the tuple Gmin and stop. Otherwise,

continue with step 2).

This is an algorithm which computes a deg-ordered tuple Gmin

of homogeneous polynomials in

P = P [ε
(0)
1 , . . . , ε(0)r0 , . . . , ε

(`)
1 , . . . , ε(`)r`

]

such that the homogeneous maps of graded free P -modules

ϕi : Fi −→ Fi−1 defined by the elements of G∩P [ε
(i)
1 , . . . , ε

(i)
ri ]

yield a minimal graded free resolution

0 −→ F`
ϕ`

−−→F`−1

ϕ`−1

−−→· · ·
ϕ3

−−→F2

ϕ2

−−→F1

ϕ1

−−→M −→ 0
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Summary and Conclusions

• For submodules of graded free modules the presenta-

tion of the idealization was described explicitly.

• We have determined the relation between the module

and its idealization with respect to their Gröbner bases and

with respect to minimal homogeneous sets of generators.

• We can idealize a homogeneous presentation and even

a graded free resolution of the module.

• The computation of a minimal homogeneous presen-

tation or a graded free resolution is then nothing but the

computation of one Gröbner basis for the ideal representing

the idealization.

• Classical strategies for computing resolutions corre-

spond to different selection strategies for this Gröbner basis

computation.

• The horizontal strategy corresponds to a particularly

brief algorithm.

• All standard optimizations (avoiding unnecessary crit-

ical pairs, Hilbert driven, ...) can be applied.

• It is easy to analyze which operations have to be im-

plemented efficiently to speed up the computation.

If you can’t realize your ideal,

idealize the real.

(Marriage Counsel)
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