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1 — GB for Modules over Free Monoid Rings

Let’s fix the notation!

¥ ={x1,...,x,} finite alphabet
>* monoid of words (or terms)
K field

K[¥*] free monoid ring (= free associative algebra, non-commutative

polynomial ring)

o term ordering on X.*, i.e. a total well-ordering such that w; <, ws

implies wswiwy <, wzwowy for all wq, we, w3, wy € X°




Every non-commutative polynomial f € K|[¥*| has a unique
representation f = ciwy + - -+ + csw, such that ¢; € K\ {0} and

W1 >g 0 >g We 1N 27,
LT, (f) = w; leading term of f
LC,(f) = c1 leading coefficient of f

Given a right ideal I C K|[X*|, we let

LT,(I)=(LT,(f)| f € I\{0}), be its right leading term ideal.

A set {f; |7 € A} is called a (right) Grobner basis of [ if
LT, (I) = (LT, (f:) | i € A),




Theorem 1.1 (Macaulay’s Basis Theorem)

The residue classes of the terms in
O,(I) ="\ LT,(I)
form a K-basis of K[>*]/I.

For every f € K|¥*], there exists a unique normal form
NF, 1(f) € (O,(I))kx such that f —NF, ;(f) € I.

The normal form can be computed by using the term rewriting

system 9, defined by a o-Grobner basis G of 1.

A o-Grobner basis of I can be enumerated using the Buchberger

procedure (Knuth-Bendix completion).




And What About Modules?

Everything generalizes easily to right submodules of free right

modules over K[3*].

F,=,_, e; K[>*] free right K[X~*]-module with basis ey, ..., e,

A term in F), is of the form e; ¢ with ¢t € 2*.
T(F,) is the set of all terms in F,,.

A module term ordering on T(F),) is a total well-ordering 7 such that
t1 <; to implies tyw <, tow for all t1,t5 € T(F,) and w € ¥*.




For every vector v € F, we define its leading term LT, (v) and its

leading coefficient LC,(v) in the obvious way.
Given a right submodule U C F),, we let
LT (U) = (LT-(v) |v e U\ {0}), be its (right) leading term module.

A set of non-zero vectors {v; | € A} is called a (right) 7-Grobner
basis of U if LT (U) = (LT (v;) | i € A),.

Theorem 1.2 (Macaulay Basis Theorem for Modules)
The residue classes of the terms in O, (U) = T(F,) \ LT (U) form a
K -basis of the module F,/U.

Also for modules we can compute normal forms of vectors and have a

Buchberger procedure to enumerate a Grobner basis.




2 — GB for Modules over Monoid Rings

M = ¥*/ ~w finitely presented monoid, i.e. ~y is the equivalence
relation generated by finitely many relations w; ~ w; with

wi,w; € X fori=1,...,r.

K[M]| = K[¥*]/I; monoid ring over M where I, is the two-sided
ideal Iny = (w1 — wi, ..., w, — w.).

Assumption: There is a term ordering o such that w; >, w, for

1 =1,...,r and such that the term rewriting system W, is

convergent (i.e. Noetherian/terminating and confluent).

So, W = {w; —wi,...,w, —w.} is a two-sided Groébner basis of 1.

Then every f € K[¥*] can be effectively reduced via Y, to a unique

normal form NFy  (f).




® finite or countable infinite set

F, free right K[M]-module with basis {¢; | ¢ € ®}
U C F, finitely generated right submodule

7 module term ordering on T(F,) that is compatible with o (i.e.

w1 <, wo implies e;wy <, e;ws)

By representing every element of M using the normal form of the

corresponding word in >.*,we can view 7 as an ordering on

T(F,) ={em|ic€ ® me M}

Problem: e;w; <, é;ws does (in general) not imply

_ _ . . W
ermims <, e;moms for mi, mo, m3 € M because reductions via —

may destroy the inequality for the representing words.




Definition 2.1 v,w € F, \ {0}

If there exist a term €;m; € Supp(w) and my € M such that
LT, (v) o mg = €;m, we say that v prefix reduces w to

_ . v
w' =w — LC,(v) "t vmy. We write w —, w'.

Here o denotes the concatenation of the representing words and = is
the identity for words.

In this situation we have LT, (vmso) = LT (v) o my a fortiors.

S C FQ is called prefix saturated if vm iyr 0 in one step for all
veSand me M.

If S is prefix saturated then v 250 for all (S) -

There exists a procedure for enumerating the prefix saturation of a

set S = {v}.
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Definition 2.2 A set G in a right submodule U C F, is called a

prefix Grobner basis of U if we have u <i>7T 0 for all w € U and if -

is confluent.

One can formulate a Buchberger criterion for prefix Grobner bases
and a Buchberger procedure for enumerating a prefix Grobner basis
of a given right submodule of F,,.

Applications:
e submodule membership can be solved effectively

e the subgroup membership problem is equivalent to a right ideal
membership problem in K[M]

e the conjugator search problem can be solved using a two-sided
syzygy computation
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3 — Polly Cracker Cryptosystems

In 1994, Fellows and Koblitz suggested the following cryptosystem.
P = Klzq,...,x,] commutative polynomial ring

fi,--., fs € P polynomials having a common zero (ay,...,a,) € K"

Public: f1,..., fs
Secret: (a1,...,0n)

Encryption: a plaintext unit m € K is encrypted as
w=m++ f191 + -+ fsgs with g; € P suitably chosen

Decryption: evaluation yields w(aq,...,a,) =m

Security: The attacker can break the cryptosystem if he can compute
a Grobner basis of I = (f1,..., fs) because m = NF, r(w).
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Ideals can be constructed which encode hard combinatorial problems

so that it is believed to be difficult to compute their Grobner bases.

[Polly Cracker Is Under Attack!}

1. Basic Linear Algebra Attack: The attacker knows
w=m-+ fig1 + -+ fsgs. Consider the coefficients of g1,..., g
as unknowns. All coefficients of the non-constant terms in
fi91 + - - -+ fsgs are known. Thus we get a system of linear
equations.

. “Intelligent” Linear Algebra Attack: One may guess the terms ¢
occurring in Supp(g;) because some of the terms in ¢ - Supp(f;)

should occur in Supp(w) if there is not too much cancellation.
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3. Differential Attack: Quotients of terms in Supp(w) allow

conclusions about possible terms in Supp(g;).

. Attack by Characteristic Terms: If there are terms which occur
in just one f; we can recognize multiples of these terms in w and

compute the corresponding terms in g;.

. Attack by Truncated GB: In order to compute NF, ;(w), it may

be sufficient to find a partial Grobner basis of 1.

A more refined version of the cryptosystem suggested by L. Ly and
called Polly 2 has been broken recently by R. Steinwandt using a side
channel attack.
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4 — Grobner Basis Cryptosystems

M = ¥*/ ~y finitely presented monoid

F, =@, 4 &K [M] free right module over the monoid ring
o, T compatible term orderings

U C FQ right submodule

Public: O, (U) = T(F,) \ LT, (U) (or a subset thereof) and finitely

many vectors ui,...,us € U

Secret: a prefix Grobner basis G of U

Encryption: a plaintext unit is of the form

m = €y, cawy + -+ ey, crw, € (O (U)) g with \; € @, ¢; € K, and
w; € M.
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The plaintext unit m is encrypted as w =m + w1 f1 + - - - + us fs Wwith
suitably chosen f; € K[M].

Decryption: Using i, compute m = NF_ z(w).

Security: e The attacker can break the cryptosystem if he can

compute a Grobner basis of (uq,...,Us),.

e The advantage of using modules is that the action of M on the set
{é; | i € ®} can encode hard combinatorial or number theoretic

problems.

e The free module F', is not required to be finitely generated. Any

concrete calculation will involve only finitely many components.
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5 — Examples of Grobner Basis Cryptosystems

Example 5.1 (Polly Cracker Cryptosystems)

If we use the monoid M = N", the free module

F,=K[M] = K|z1,...,%,], and the submodule

U= {(x;—ai,..., o, —ay,), we obtain the original Polly Cracker

Cryptosystem.

The set O, (U) is equal to {1}. Thus a plaintext unit is just an
element of K.

The secret Grobner basis is {1 —a1,...,T, — an}.

The decryption yields the same result because

NF_ z(w) =w(a1,...,an).
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Example 5.2 K =F; and M = N? yields K[M] = Fylx, y]

p,q > 0 distinct prime numbers, n = pq, and Il = (Z/nZ)*

@i:ol e;K[zx,y] and 7 = DegRevLexPos

Choose € € (Z/(p— 1)(q — 1)Z)* and compute d = e 1.

Public: F, (and thus n), O,(U) = {eo,- .., en_1}, the number ¢, and
the vectors

{uy,...,us} ={€;x — €jc moan, €ixy —e; |i=0,...,n—1}

Secret: The secret key consists of the primes p, ¢ and the number d.

Equivalently, it is the 7-Grobner basis

G={uy,...,us}U{ey —€dpun|i=0,...,n—1} of U= (G)

18



Encryption: A plaintext unit is a vector e, € O,(U). To encrypt it,

we form

W= €n + (emTY — €m) — (EmT — €me moan)Y = €me moanl

Decryption: Compute NF_#(w) = €,,¢d noan = €m.-

Security: The attacker can compute the Grobner basis if and only if

he can factor n = pg and find d.
This is nothing but the GB version of the RSA cryptosystem!
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Example 5.3 K =Fy, M =N, and K[M] = Fy|z]

p > 0 prime number, g generator of (Z/pZ)*

F, =@ K[z] ® @'~ e;K[z] and T = DegPos with ¢; > e;

Choose a number a € {1,...,p — 1} and compute b = g® mod p.

Public: F, (and thus p), O,(U) = {e1,...,e,_1}, the number b, and

the vectors
{ug,...,usf ={er1 —eifU{ex —€gi, €57 — €5 | 4,5 =1,...,p—1}

where all indices are computed modulo p.

Secret: The number a, or equivalently the 7-Grobner basis

G={uy,...,us}U{g; —ep|i=1,....,p—1} of U ={(G)
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Encryption: A plaintext unit is of the form e; + ¢, with
m € {1,...,p— 1}. Use the following variant of the GB

cryptosystem: choose a random number k, form (e; + e, )z*

, and

send w = ek + €pk € (61 4 €T + (U, ..., Us)p.

Decryption: First compute NF_7 = ey + €,,p%. Since

G
epk + empk (€1 + e )",

this end, it suffices to compute m = (mb*)/b* and to form e,,.

we have to “divide” this vector by x*. To

Security: This cryptosystem can be broken if the attacker is able to
compute the discrete logarithm a of b = g% or k of ¢g*. In the GB
version, the reduction €« . 4 s xFe; =5 xFeq would take k> 0

steps. If one knows a, one can get rid of €, by using just one

reduction step e ;x — €gka = €pk.

This is nothing but the GB version of the ElGamal cryptosystem!
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[Further Examples of GB Cryptosystems}

e Le van Ly’s cryptosystem Polly 2 is a variant using commutative
polynomials

e Tapan Rai’s cryptosystem uses two-sided Grobner bases of ideals
in K[X*], but is otherwise identical.

e Also the braid group based cryptosystems of Ko-Lee et al. and of
Anshel-Anshel-Goldfeld can be viewed as Grobner basis
cryptosystems, where the group elements act on the standard
basis vectors by conjugation on the index.
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6 — Efficiency and Security Considerations

Efficiency. One difficulty in constructing an efficient example of a
GB cryptosystem is the possibility of exponential support growth
during the normal form computation. Possible countermeasures

include:
e many generators are binomials

e determine individual coefficients of the normal form by applying

suitable linear functionals

Linear Algebra Attacks. The various types of linear algebra

attacks can be rendered infeasible in the following ways:

e use a module of very large rank
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e use a large set O, (U) to make the ciphertext statistically similar to

the plaintext

e over a (not too big) group ring many products (e;t)t’ will give the
same term; the corresponding coefficients cannot be recovered

e in a group ring every term is a multiple of any other term

Chosen Ciphertext Attacks. In the proposed system the receiver
cannot detect invalid cyphertexts. Moreover, the decryption is

K-linear. Using a hash function we can overcome this problem:
e append suitable random values to the message (“message padding”)
e compute a hash value of the padded message

e transmit the cyphertext of the message, the ciphertext of the
padding, and the hash value
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7 — Further Suggestions

Increasing the Security.

e The Grobner basis of the module (uy,...,us), generated by the

public vectors need not be finite. A truncated GB computation

should yield no “simple” elements in the module.

e If we work with two-sided ideals and modules, the linear algebra
attack will yield a system of quadratic equations for the unknown

coeflicients.

e We should try to give a security certificate: if you can solve this
instance, then you can also solve the following (supposedly difficult)

computational problem ...
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Generating New Hard Instances.

e F'ind monoid or group rings having ideals whose Grobner bases are

difficult to compute.

e Eincode a hard instance of an action of a group on a set by letting

the group act on the standard basis vectors of a free module

e Use ideals or submodules for which O, (U) is “large enough” to

allow the encryption of sizable plaintext units. This decreases the

message expansion ratio.

e Manufacture the encryption procedure such that the likelihood of
cancellations in the computation of w =m + w1 f1 + - + usfs is

maximized. Use finite groups of “medium size”.
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Thank You for Your Attention!
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