N HALF

Algebraic Oil

Hennie Poulisse

(Shell Research, Rijswijk, The Netherlands)

Overview

Traditional Research

- Exploration: Geophysics
- Production: Reservoir Engineering

A First Turning Point Production Operations

A Second Turning Point Production Operations Revisited The Decomposition Problem

(D. Heldt, A. Kehrein, S. Pokutta)

and the second

The Dortmund – Shell connection

Seismic Reflections

Geophysics

Recollections of the formative years of the geophysical exploration industry A refraction shot in West Texas. 2,000 pounds of dynamite shot by Humble Oil 8 Refining Company (now Exxon), 1930.

From: Petroleum Handbook (Shell, 1948)

Fig. 14. Diagrammatic scheme for Reflection Shooting.

wave equation

 $\Omega = \Omega(m)$

Inversion Find the best model *m* that explains the data

 $\min_{m} J(m)$ with

$$J(m) = \sum_{l} (v_{l}(m) - v_{l}^{\text{obs}})^{2}$$

 $s.t., \Omega(m)v = f$

General approach too difficult, J has local minima

Migration: an initial model, m_0 , is assumed known

A large number of approaches for the Migration problem Here just one example

•L is lower triangular, U is upper triangular

•back substitution: $v = U^{-1}L^{-1}F$

The Geophysics of seismic 4D

4D seismic amplitude and timing changes with production

Time-lapse Seismic

The Brent oil field in the North See

Flow through porous media Reservoir Engineering

Flow Equations, to be solved numerically Can be derived from Navier Stokes Equation

le success with physical' modeling

- relation original physical parameters and parameters in 'numerical' expressions difficult if not unknown
- physical objects measurements, laws are scale dependent
 - •mismatch between scale_laws and scale_measurements
- correctness of state description cannot be decided

Alternative: construct physical models from observations

(planet orbits of Kepler and Gauss)

$$\psi \in \mathbb{X}$$
 $\psi = \begin{pmatrix} q \\ u \end{pmatrix}$ well production input(s)

Assume that X is a compact metric space.

Identify from well test experiment
$$\mathbf{F} : \mathbb{X} \to \mathbb{X}$$

 $\mathbf{F}(\psi) = \begin{pmatrix} \mathbf{f}(\psi) \\ \mathbf{S}(u) \end{pmatrix}$
shift map

F viewed as dynamical system: ξ follows ψ if $\xi = \mathbf{F}^n(\psi)$ for some n = 1, 2, ...Identify **F** and its iterates with their graphs in $\mathbb{X} \times \mathbb{X}$.

$$\begin{split} \mathcal{O}\mathbf{F} &= \bigcup_{n=1}^{\infty} \mathbf{F}^n \\ (\xi,\psi) \in \mathcal{O}\mathbf{F} \Leftrightarrow \xi = \mathbf{F}^n(\psi) \text{ for some } n = 1, 2, \dots \\ \mathcal{O}\mathbf{F}(\psi) &= \{\mathbf{F}(\psi), \mathbf{F}^2(\psi), \dots\} \text{ positive orbit} \end{split}$$

the orbits for each well give the production estimates for each well

Daily Reconciliation compare and adjust individual Estimates against bulk metering.

WWhat!

dealing with
uncertainty
$$\mathbb{V}_{\epsilon} = \{(\psi_1, \psi_2) \in \mathbb{X} \times \mathbb{X} \mid d(\psi_1, \psi_2) \leq \epsilon\}$$

signal-to-noise ratio

$$\epsilon$$
-chain $\{\psi_n\}: \psi_{n+1} \in \mathbb{V}_{\epsilon}(\mathbf{F}(\psi_n))$

$$\mathcal{C}\mathbf{F} = \bigcap \{\mathcal{O}(\mathbb{V}_{\epsilon} \circ \mathbf{F}) \mid \epsilon > 0\} \quad \text{(chain recurrent set)} \\ \xi \in \mathcal{C}\mathbf{F}(\psi) \Leftrightarrow \forall \epsilon \exists \epsilon \text{-chain beginning at } \psi \text{ and ending at } \xi$$

Brunei – Iron Duke and Champion Oil Platforms

inirq euld

Polynomial Ring

 $q \approx \sum_{j=1}^{N} \rho_j q_j \quad \left(\rho_j \in \mathbf{Field} \right)$

casting the 'Decomposition Problem' in terms of Polynomial Rings:

j=1

$$\mathbf{R} = \mathbb{R}[x_1, \dots, x_n]$$

"physical meaning associated with indeterminates":

$$\psi_t : \mathbb{R}[x_1, \dots, x_n] \to \mathbb{R}$$
$$t \in \{1, \dots, T\} \subset \mathbb{N} \quad (sample \ number)$$

then e.g. $\psi_t(x_1) = THP_t$

 $\mathbb{R}[THP, FLP, \ldots]$

ordering choice has physical consequences

substitution homomorphism

$$f, f_1, \ldots, f_N \in \mathbf{R}$$

total production

incliviclual production with contribution from 'other' wells zero

E. S. S. A. S. Ma

another physical interpretation: zeros polynomials related to no production points

$$f \in (f_1, \dots, f_N) = (f_1) + \dots + (f_N)$$

Ideal generated by individual productions

approximation of the total production in this Ideal Leads to a decomposition in terms of individual productions

example <u>empirical</u> polynomial

$$\begin{split} f_{1} &\approx 2.9232 * (\sqrt{((DHP_{1} - DHP_{tu}) * DHP_{tu}) * FLP}) - \\ &2.7075 * (\sqrt{((DHP_{1} - DHP_{tu}) * DHP_{tu})} * DHP_{1}) + \\ &2.9517 * \sqrt{((DHP_{tu} - THP) * THP)} - \\ &1.2158 * (\sqrt{((DHP_{tu} - THP) * THP) * THP}) + \\ &0.3856 * (\sqrt{((THP - FLP) * FLP) * DHP_{tu}}) + \\ &2.5594 * (\sqrt{((DHP_{1} - DHP_{tu}) * DHP_{tu}) * DHP_{tu}}) \\ \end{split}$$

example: empirical polynomial total production

$$\begin{split} f &\approx 0.5113 * (f_1 * DHP_{tu} * DHP_2) - \\ &1.2104 * (f_1 * FLP * \sqrt{((DHP_{tu} - THP) * THP))} + \\ &0.4759 * (f_2 * \sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu})} * \sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu})} - \\ &0.4071 * (f_1 * DHP_{tu} * DHP_1) + \\ &0.0841 * (f_1 * THP * THP) - \end{split}$$

 $0.2738 * (f_2 * \sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu})} * \sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu})})$

breaking open the interrelationships problem: on-going research, under debate

$$(g_1, \ldots, g_N) \in \mathbf{R}^N$$
 decomposition
 $(f_1, \ldots, f_N) \in \mathbf{R}^N$ tuple of individual productions
 $f \in \mathbf{R}$ total production

$$g_i - 1 \in \sqrt{(f_1, \dots, f_{i-1}, f_{i+1}, \dots, f_N)}$$

$$f_i g_i = f_i - \sum_{j \neq j} h_j f_j f_i \quad with \ polynomials \quad h_j \in \mathbf{R}$$

$$-(f_1 + \dots + f_N) \in \sqrt{(\{f_i f_j \mid i \neq j, i, j \in \{1, \dots, N\})}$$

starting activities of an ambitious Research Program

In 2004 e-mail contact with Prof. Martin Kreuzer

-

н.

4

Algebraic Subject	E & P Application
Elimination Theory	Acronym for Where, when, what to exact the Mir met requirements to only all infra structure.
Invariant Theory	Generic elements Global exchange of Information
Homotopy	Test versus Production/Short-term versus Long-term The changes are viewed as continuous deformations. Of importance for Starting up sequences and Ultimate Percevery
Automated Theorem Proving	Diagnostics and Decisions Including relationships between processes that run on different time scales,
Computational	considered as next generation Artificial Intelligence.
Homology	Surface characterization of sub-surface through computation of homology groups. Of particular importance for last pair.
D - Modules	Non-seismic Exploration This application is possible since this algebraic subject allows the consideration

COCOA

sponsored by the Shell Research Foundation

Explaining our program to the algebraic community at CoCoA Summer School

-

.

ά. ----

1

Algebraic	E & P Application
Surject	
Elimination	www2.m
Ineory	Acronym for "Where, when, what to measure". Minimal requirements technical infra structure. Generic elements
Theory Homotopy	Global exchange of Information Test versus Production/Short-term versus Long-term
Automated	The changes are viewed as continuous deformations. Of importance for Starting-up sequences and Ultimate Recovery
Theorem Proving	Including relationships between processes that run on different time scales, e.g. early recognition of building-up water break through. Subject may be considered as next generation Artificial Intelligence.
Computational Homology	Surface characterization Surface characterization of sub-surface through computation
D - Modules	Non-seismic Exploration This application is possible since this algebraic subject allows the consideration

 $\psi_{\lambda} \quad : \quad \mathbb{R}[x_1, \dots, x_n] \to \mathbb{R}$

 $\lambda \in Sampling points operating range of individual production of well i$

 f_{i_k} , f_{i_l} alternative polynomial representations for individual production of well i $f_{i_k} - f_{i_l} \in Ker(\psi_{\lambda})$ $Ker(\psi_{\lambda})$: Ideal of relations satisfied by λ in \mathbf{R}

spreading knowledge within the cooperation:

within the international CoCoA team

students

clirect confrontation with technology

students

First student: Daniel Heldt Next student: Matthias Machnik BM algorithm: to estimate an ideal for a **realistic** set of 'perturbed' zeros

commuting between technology and mathematics

Everyone going offshore has to pass the 'HUET' train

different polynomials $\mathbf{f}_{\!\mathbf{1}}$, 'equivalent' evaluations

