Algebraic Computations on Noisy, Measured Data Daniel Heldt, Sebastian Pokutta, Hennie Poulisse

Based on Joint On-Going Work: Daniel Heldt, Martin Kreuzer, Sebastian Pokutta, Hennie Poulisse

Contents

Industrial Application of Computer Algebra ApVI Calculated

The 'Champions Field', South-Chinese Sea, offshore Brunei

Production Relation for an Oil Well

example of a polynomial well production

$$\begin{array}{l} production = 2.9232 * (\sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu}) * FLP}) - \\ 2.7075 * (\sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu}) * DHP_{1}}) + \\ 2.9517 * \sqrt{((DHP_{tu} - THP) * THP)} - \\ 1.2158 * (\sqrt{((DHP_{tu} - THP) * THP) * THP}) + \\ 0.3856 * (\sqrt{((THP - FLP) * FLP) * DHP_{tu}}) + \\ 2.5594 * (\sqrt{((DHP_1 - DHP_{tu}) * DHP_{tu}) * DHP_{tu}}) \\ \end{array}$$

construction of well production polynomial

$$P = \mathbb{R}[x_1, \dots, x_n]$$

indeterminates

$$\Rightarrow x_1 = THP, x_2 = \sqrt{((DPT - P_{tubing})P_{tubing})}, \dots$$

production polynomial *f* has to be fitted to a set of points:

$$\mathbb{X} = \{p_1, \dots, p_s\} \subset \mathbb{R}^n$$

-> evaluations of indeterminates at first data point

number of points in the order of thousands not uncommon

relations in the data, among the indeterminates

$$f \in P \text{ polynomial estimated from noisy data}$$
$$\psi_{p_i} : P \to \mathbb{R} \text{ evaluation homomorphism} : h \mapsto h(p_i)$$
$$\delta \in \mathbb{R}^+$$
$$E = \{ e \in \mathbb{R}^{+1} \mid e \in \mathbb{N} \mid e \in \mathbb{N} \}$$

$$E_f = \{g \in P \mid |g(p) - f(p)| \le \delta \forall p \in \mathbb{X}$$

Small Polynomials:

$r \in P \ small \ polynomial \ \Leftrightarrow |\psi_p(r)| \le \delta \ \forall \ p \in \mathbb{X}$

Vanishing Ideal

$$I(\mathbb{X}) := \{ g \in P \mid \psi_p(g) = 0 \,\forall \, p \in \mathbb{X} \}$$

-^>

example

$$p_1 = \dots = p_5 \in \mathbb{R}^2$$
$$f(p_1) = \dots = f(p_5) = 0$$

univariate polynomial

perturb points

polynomial of degree 5 vanishing on points

remove the purturbations first before constructing the polynomials
construct polynomial allowing it to pass 'close by' prescribed points

delta-Approximate Vanishing Ideal

$$I_{\delta}(\mathbb{X}) \quad : \quad \exists G \text{ with normalized coefficient vectors} \\ s.t. \quad |g(p)| \le \delta \,\forall p \in \mathbb{X} \text{ and } g \in G$$

of course we still have:

$$\exists g \in I_{\delta}(\mathbb{X}), |g(p)| > \delta, for some p \in \mathbb{X}$$

Best thing one can do:

Empirical Ring:

$$Q := P/I_{\delta}(\mathbb{X})$$

Empirical Polynomial:

$$f \in Q$$

HOW TO CALCULATE THE

ApVI

The Buchberger–Möller algorithm:

- 1. Set $\mathcal{O} = \emptyset$, $Eval(\mathcal{O}) = \emptyset$ and $G = \emptyset$.
- 2. If $\mathbb{T}^n \setminus \mathrm{Lt}_{\sigma}(G) = \emptyset$, stop; otherwise let t be the set's minimal element.
- 3. Compute $v = (t(p_1), \ldots, t(p_m))^T$ via evaluating t on the point set X.
- 4. If $v \in Eval(\mathcal{O})$, find a representation of v and add the corresponding polynomial to G. Then go to Step 2.
- 5. Add t to \mathcal{O}, v to $Eval(\mathcal{O})$ and go to step 2.

Classical Version

Drawbacks:

• The found relations are far away from vanishing on the points:

- numerical error prevent accurate calculation
- exact solution would result in an O with #O = #P (1000 here!!)
- The exact relations (for the perturbed data) are usually of very high degree

How to overcome these problems:

- Do not force the relations to pass through every point, but demand passing "close" by"
- Allow points which lie "close together" to be "melt together"
- "Divide the good ones from the bad ones"
- Process blocks rather than single elements to (hopefully) prevent sub-optimal solutions and speed-up computations

An approximate Buchberger-Möller algorithm:

- 1. Set $\mathcal{O} = \emptyset$, $Eval(\mathcal{O}) = \emptyset$, $G = \emptyset$ and d = 0.
- 2. If $\mathbb{T}^n \setminus LT_{\sigma}(G) = \emptyset$, stop; otherwise let $T = \{t_1, \ldots, t_s\}$ contain the set's polynomials of degree d.
- 3. Compute the matrix $V = (v(t_1), \ldots, v(t_n))$, where $v(t_i) = (t_i(p_1), \ldots, t_i(p_m))^T$ is t_i 's evaluation on the point set X.
- 4. Compute the singular values of the matrix $(V \ Eval(\mathcal{O}))$ and a basis of all singular vectors with singular values $< \varepsilon$. Represent these basis as a set of (reduced) polynomials and add them to G.
- 5. Add all terms in $T \setminus LT_{\sigma}(G)$ to \mathcal{O} and their evaluations to $Eval(\mathcal{O})$, increment d and go to step 2.

Another (short) example...

Approximate Vanishing Ideal with Singular Value Decomposition

Classical Version

Truncate below eps = 0.7 An approximate Buchberger-Möller algorithm for border basis:

- 1. Set $\mathcal{O}s = \emptyset$, $Eval(\mathcal{O}) = \emptyset$, $G = \emptyset$ and d = 0.
- 2. If $(\mathcal{O} \cdot \{x_1, \ldots, x_n\})_d$ is empy, stop; otherwise let $T = \{t_1, \ldots, t_s\}$ contain the set's polynomials of degree d.
- 3. Compute the matrix $V = (v(t_1), \ldots, v(t_n))$, where $v(t_i) = (t_i(p_1), \ldots, t_i(p_m))^T$ is t_i 's evaluation on the point set X.
- 4. Compute the singular values of the matrix $(VEval(\mathcal{O}))$ and a basis of all singular vectors with singular values $< \varepsilon$. Represent these basis as a set of (reduced) polynomials and add them to G.
- 5. Add all terms in $T \setminus LT_{\sigma}(G)$ to \mathcal{O} and their evaluations to $Eval(\mathcal{O})$, increment d and go to step 2.

Timings (GB-Version) (2024 points, 9 indets)

	ε	# in basis	max deg	max m-error	mean m-error	calc. time
1	1	15	3	0.015	0.0025	0.77 s
2	0.5	19	3	0.0063	$8.1262 \cdot 10^{-4}$	0.84 s
3	0.1	24	3	$6.9260 \cdot 10^{-4}$	$2.7851 \cdot 10^{-4}$	0.82 s
4	0.01	39	4	$9.0761 \cdot 10^{-5}$	$1.7142 \cdot 10^{-5}$	1.43 s
5	0.001	59	4	$1.5547 \cdot 10^{-6}$	$1.0135 \cdot 10^{-6}$	2.34 s
6	0.0001	82	4	$4.8458 \cdot 10^{-7}$	$1.0858 \cdot 10^{-7}$	4.04 s
7	0.00001	125	4	$8.4620 \cdot 10^{-8}$	$8.0948 \cdot 10^{-9}$	7.31 s
8	0.0 (full)	260	5	$4.6954 \cdot 10^{-11}$	$2.0193 \cdot 10^{-11}$	22.04 s

TABLE 1. Results (real-world data set) for calculating a DegLex Gröbner basis

Timings (BB-Version) (2024 points, 9 indets)

	ε	# in basis	max deg	max m-error	mean m-error	calc. time
1	1	94	6	0.0115	$5.5523\cdot10^{-4}$	1.86 s
2	0.5	88	5	0.0063	$3.4916 \cdot 10^{-4}$	1.72 s
3	0.1	185	8	$6.9626 \cdot 10^{-4}$	$3.1908 \cdot 10^{-5}$	4.19 s
4	0.01	163	5	$9.0761 \cdot 10^{-5}$	$3.3018 \cdot 10^{-6}$	4.60 s
5	0.001	223	5	$1.5547 \cdot 10^{-6}$	$2.1958 \cdot 10^{-7}$	8.07 s
6	0.0001	306	6	$4.8458 \cdot 10^{-7}$	$2.4311 \cdot 10^{-8}$	13.55 s
7	0.00001	345	5	$8.4620 \cdot 10^{-8}$	$3.4753\cdot10^{-9}$	20.52 s
8	0.0 (full)	539	5	$3.6442 \cdot 10^{-11}$	$1.3308 \cdot 10^{-11}$	53.37 s

TABLE 2. Results (real-world data set) for calculating a border basis

Application within Shell

Calculate relations for the productions... *Typical datasize: 2000-5000 points in up to 15 indets*

Application within steel industries

Application fields:

- predict production quality
- automated quality assurance

Typical datasize: 10000-15000 points in 10-15 indets

- solution time < 238.73 s
- #G = 464, #O = 391

Acknowledgement:

C. Fassino and J. Abbott worked in parallel on an algorithm which also computes almost vanishing ideals, but with a different approach... See:

C. Fassino. An Approximation to the Gröbner Basis of Ideals of Perturbed Point. Preprint (2006)

Thank you! !