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There are things that are so serious

that you can only joke about them.

Approximate
Border
Bases
Or
Traditional
Theorems?
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Introduction

In practical applications good models lead most of the time to zero-dimensional
ideals. The reason is that a zero-dimensional ideal is an algebraic structure which
encodes a system of polynomial equations with only a finite number of solutions.

In pure mathematics the coefficients of the equations are treated according to their
formal properties. Consequently, mathematicians like exact numbers, even better
if they are elements of a field. But in practice one has to cope with approximate
data which lead to phenomena of instability.

After the fundamental work of Buchberger, Gröbner bases gained the status of
the most known and used algebraic tool. However, they do not behave always
well with respect to stability issues. More recently, after the fundamental work of
Stetter, border bases started to be considered as better suited algebraic tools for
several practical problems.
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How did we (i.e. the CoCoA Team) get interested in border bases?

• Statistics – A few year ago, I and Massimo Caboara were able to use Border
Bases as a theoretical tool, and gave a complete solution to a problem of Design
of Experiments, a branch of Statistics (see [CR01]).

• SHELL – The main idea of the CoCoA-SHELL collaborative project is to use
polynomial models for improving oil exploration and recovery. At this early
stage, what is most needed is computer algebra software offering extremely
high efficiency in performing basic operations with polynomial objects such as
ideals, modules, and syzygies.

• CoCoA – Currently, there is only a single computer algebra software library with
such capabilities: the one being developed as part of the CoCoA 5 project.
And we are including Border Bases into the library.

• The book(s) – In the last few (?) years I and Martin worked on the Book and
included a lot of material on Gröbner and Border Bases.
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Part I: Deformations of Border Bases

Recently border bases started to be considered as useful algebraic tools. Let us
see why by asking a few questions and giving some answers.

Q1. What are Border Bases (BB)?

Q2. How do they generalize Gröbner Bases (GB)?

Q3. How do we compute BB?

Q4. Are BB numerically stable?

– The answers to Q1, Q2 are given in [KR05], and will be recalled using examples.

– The answer to Q3 is given in the recent paper [KK05] and in some work of
Mourrain and coworkers and will be treated by Kreuzer, Abbott and Poulisse.

Let us make some remarks on Q4. To start with, let us look at an example.
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Example This is Example 6.4.1 of [KR05].

Consider the polynomial system

f1 = 1
4 x2 + y2 − 1 = 0

f2 = x2 + 1
4 y2 − 1 = 0

The intersection of Z(f1) and Z(f2) in A2(C) consists of the four points
X = {(±

√
4/5, ±

√
4/5)}.

Using Gröbner basis theory, we describe this situation as follows. The set
{x2 − 4

5, y2 − 4
5} is the reduced Gröbner basis of the ideal I = (f1, f2) ⊆ C[x, y]

with respect to σ =DegRevLex. Therefore we have LTσ(I) = (x2, y2), and the
residue classes of the terms in T2 \LTσ{I} = {1, x, y, xy} form a C-vector space
basis of C[x, y]/I.

Now consider the slightly perturbed polynomial system

f̃1 = 1
4 x2 + y2 + ε xy − 1 = 0

f̃2 = x2 + 1
4 y2 + ε xy − 1 = 0

where ε is a small number. The intersection of Z(f̃1) and Z(f̃2) consists of four

perturbed points X̃ close to those in X.
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Now the ideal Ĩ = (f̃1, f̃2) has the reduced σ-Gröbner basis

{x2 − y2, xy + 5
4ε y2 − 1

ε, y3 − 16ε
16ε2−25

x + 20
16ε2−25

y}

Moreover, we have LTσ(Ĩ) = (x2, xy, y3) and T2 \ LTσ{Ĩ} = {1, x, y, y2}.

A small change in the coefficients of f1 and f2 has led to a big change in the
Gröbner basis of (f1, f2) and in the associated vector space basis of C[x, y]/(f1, f2),
although the zeros of the system have not changed much. In numerical analysis
this kind of unstable behaviour is called a representation singularity.
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Let us reconsider the above Example.

Let P = Q[x, y], let I = (1
4 x2 + y2 − 1, x2 + 1

4 y2 − 1), and let Ĩ = (1
4 x2 + y2 +

ε xy − 1, x2 + 1
4 y2 + ε xy − 1) with a small number ε. Then both I and Ĩ have a

border basis with respect to O = {1, x, y, xy}.
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The border of O is ∂O = {x2, x2y, xy2, y2}. The O-border basis of I is

{x2 − 4
5, x2y − 4

5y, xy2 − 4
5x, y2 − 4

5}

The O-border basis of Ĩ is

{x2 + 4
5 εxy − 4

5, x2y − 16ε
16ε2−25

x + 20
16ε2−25

y,

xy2 + 20
16ε2−25

x− 16ε
16ε2−25

y, y2 + 4
5 εxy − 4

5}
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When we vary the coefficients of xy in the two generators from zero to ε, we see
that one border basis changes continuously into the other. Thus the border basis
is numerically stable under a small perturbations of the coefficient of xy.

Let us now try to go on with the help of some experiments

Let us consider another perturbed ideal Iε generated by the following set of
perturbed equations

(1/4− ε)x2 + εxy + (1− ε)y2 − 1− ε, x2 + 1/4y2 − 1− ε

It yields the following border basis when ε = 10−6

x2 − 1
374999997xy − 7499999974999999

9374999925000000,

x2y − 1171875027343750156250
10986327949218751 x− 2812499968124999700000003

3515624943750000325000000y,

y2 + 4
374999997xy − 7500000175000001

9374999925000000,

xy2 − 2812500043124999849999997
3515624943750000325000000x + 7499999974999999

878906235937500081250000y

This differs from the border basis of I only slightly. The variation of the coefficients
is of the same order of magnitude as ε itself.

What happens if, instead of perturbing the ideal, we perturb the coordinates of
the points? If you try with CoCoA you see the same phenomenon happening.
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Can we explain these experimental data?

The generic border prebasis is defined by “marking” the terms in ∂O and then
letting the coefficients vary freely to get generic linear combinations of the elements
of O.

Let N denote the number of elements in the basis O, and let B denote the number
of elements in the generic border prebasis.

It is clear that the generic border prebasis is parametrized by an affine space of
dimension D = N × B. In our previous example, we have N = 4, B = 4, hence
D = 16.

To get the border basis variety we need to impose that the multiplication matrices
are pairwise commuting.

Q5. Let us denote by BO the O-border basis variety associated to the order ideal
O = [1, x, y, xy ]. What is the expected dimension of BO?

The first answer comes from CoCoA.We get dim(BO) = 8. But CoCoA is in trouble
as soon as we enlarge the cardinality of O just a bit.

So, let us try to understand the number 8. Every perturbation of the set of four
points is still a set of four points. A generic set of four points needs 8 parameters
to be represented.
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Let us see it from another perspective. The ideal of a set of four points is the
complete intersection of two quadratic equations. Now, every quadratic equation
depends on 6 homogeneous parameters. So we have to count the dimension of
2-dimensional subspaces of A6 or, equivalently, the dimension of Grass(1, 5). It
turns out that its dimension is 8. In conclusion, we have

dim(BO) = 8

Q6. How can O not be a basis (as a K-vector space) of the quotient ring P/I
where I is the defining ideal of a set of four points?

We know that dimK(P/I) = 4. Therefore it is enough to impose that the elements
in O are linearly independent. We conclude that

O is not a basis of P/I if the ideal I contains a polynomial which is a linear
combination of the elements of O.

Certainly this is the case if the four points are collinear. It is also the case
for instance if X = {p1, p2, p3, p4} where p1 = (0, 0), p2 = (0, 1), p3 = (0, 2),
p4 = (1, 0). In this case the ideal is I(X) = (xy, x2 − x, y3 − 3y2 + 2y) and we
see that xy is in the ideal, so that O is not linearly independent modulo I(X).
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Finally, a contribution to Q4.

Suppose we have an O-border basis B. The ideal I generated by B is such that
dimK(P/I) = 4, so it is the ideal of a 0-dimensional scheme with multiplicity 4.
Most of the ideals I of that type represent 4 distinct points, and O is a basis of
the quotient vector spaces P/I. Since the elements of P can be interpreted as
functions on the set of points, we can say that the functions 1, x, y, xy are
linearly independent on the set. Suppose now we do one of the two following
operations

a) We perturb the equations of a minimal set of generators of I.

b) We perturb the coordinates of the four points.

In both cases what we get is still a set of four points, and the four functions
1, x, y, xy are still linearly independent, since the determinant of the evaluation
matrix was non-zero before, and hence it is still different from zero.
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But be careful. This is a special case of a complete intersection of two conics,
hence perturbing the two conics still yields two conics, and hence four points.
If, instead we perturb another set of generators, for instance a border basis, the
situation may change dramatically, in the sense that the perturbed ideal no longer
represent a set of four points, but for instance the unit ideal. Nevertheless, even in
this case we do have almost commuting matrices. The geometric interpretation
is that we move slightly outside the variety BO.

A partial conclusion after the above experiments is the following.

Q4. Are BB numerically stable?

Yes, they are, in the sense that perturbing the coordinates of a finite set of points,
we move inside BO. Perturbing the equations, we possibly move outside, but not
too far away. In some cases, for geometric reasons, even perturbing the equations
does not imply that we move outside BO, as in the case of the four points and the
minimal generating set (two conics).
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Part II: Computation of Border Bases

K field, P = K[x1, . . . , xn], I ⊆ P 0-dim. ideal, O = {t1, . . . , tµ} order ideal.

Basis Transformation Algorithm

The following algorithm checks whether O supports a border basis of I and, in the
affirmative, computes the O-border basis {g1, . . . , gν} of I.

(T1) Choose a term ordering σ and compute Oσ{I} := Tn \ LTσ{I}.

(T2) If #Oσ{I} 6= µ then return “O has the wrong cardinality” and stop.

(T3) LetOσ{I} = {s1, . . . , sµ}. For 1 ≤ m ≤ µ, compute the coefficients τim ∈ K of
the normal form NFσ,I(tm) =

∑µ
i=1 τimsi. Let T be the matrix (τim)1≤i,m≤µ.

(T4) If det T = 0 then return “O does not support a border basis of I” and stop.

(T5) Let ∂O = {b1, . . . , bν}. For 1 ≤ j ≤ ν, compute the coefficients βij ∈ K of
NFσ,I(bj) =

∑µ
i=1 βijsi. Let B be the matrix (βij)1≤i≤µ,1≤j≤ν.

(T6) Compute (αij) = T −1B. Return gj := bj −
∑µ

i=1 αijti for 1 ≤ j ≤ ν.
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Mourrain’s Generic Algorithm

Let F := {f1, . . . , fs} ⊂ P be a set of polynomials that generates a 0-dim. ideal
I = 〈F〉P . The following algorithm computes a vector subspace B ⊆ P connected
to 1 such that P = B ⊕ I.

(M1) Choose a finite-dim. vector subspace U ⊆ P that is connected to 1 and contains
f1, . . . , fs.

(M2) Let V0 = 〈f1 . . . , fs〉K. Let ` = 0.

(M3) Compute V`+1 := V +
` ∩ U , where V +

` = V` + x1V` + · · ·+ xnV`.

(M4) If V`+1 6= V` then increase ` by 1 and go to step (M3).

(M5) Compute a vector subspace B connected to 1 such that U = B ⊕ V`.

(M6) If B+ 6⊆ U then replace U with U+ and go to step 3. Otherwise return B and
stop.

Problems: Make (M5) effective, produce B = 〈O〉 with an order ideal O.
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Ideas:

1. U is the universe for our computations. All computations take place in a finite
dimensional K-vector space.

2. The vector space V∞ = V` for ` � 0 is called the stable U -span of f1, . . . , fs.
It is an approximation of I ∩ U . The ideal Ĩ = 〈V∞〉 is an approximation of I.

3. During the computation of V∞ we can keep track of vector space bases such
that the final basis {v1, . . . , vr} of V∞ has pairwise different leading terms with
respect to some term ordering σ. Then we have

LTσ(V∞) = {LTσ(v1), . . . ,LTσ(vr)}

4. If U is generated by an order ideal of monomials, then O = LTσ(U) \
〈LTσ(v1), . . . ,LTσ(vr)〉 is also an order ideal and U = V∞ ⊕ 〈O〉K.

5. If ∂O ⊆ U then the Buchberger Criterion for border bases shows that O
supports a border basis of I.
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The Border Basis Algorithm

Let F = {f1, . . . , fs} ⊂ P generate a 0-dim. ideal I = 〈F〉P . Let σ be a degree-
compatible term ordering. The following algorithm computes the Oσ{I}-border
basis {g1, . . . , gν}.

(B1) Let d := max{deg(fi) | 1 ≤ i ≤ s} and U := 〈Tn
≤d〉K.

(B2) Compute a basis V = {v1, . . . , vr} of 〈F〉K with LTσ(vi) 6= LTσ(vj) for i 6= j.

(B3) Compute a basis extension W ′ for 〈V〉K ⊆ 〈V+〉K so that the elements of
V ∪W ′ have pairwise different leading terms.

(B4) Let W = {vr+1, . . . , vr+%} = {v ∈ W ′ | deg(v) ≤ d}.

(B5) If % > 0 then replace V with V ∪W, increase r by %, and go to (B3).

(B6) Let O := Tn
≤d \ {LTσ(v1) . . .LTσ(vr)}.

(B7) If ∂O 6⊆ U then increase d by one, update U := 〈Tn
≤d〉K, and go to (B3).

(B8) Apply the Final Reduction Algorithm and return its result (g1, . . . , gν).
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Example. Consider the polynomials
f1 = z2 + 3y − 7z, f2 = yz − 4y, f3 = xz − 4y, f4 = y2 − 4y, f5 = xy − 4y,
f6 = x5 − 8x4 + 14x3 + 8x2 − 15x + 15y which generate the vanishing ideal of

X = {(−1, 0, 0), (0, 0, 0), (1, 0, 0), (3, 0, 0), (5, 0, 0), (4, 4, 4), (0, 0, 7)} ⊆ Q3

Let σ = DegRevLex.

1. The initial universe U = 〈T3
≤5〉 has dimension 56.

2. The computation of the stable span needs four basis extensions.

3. The result is O = {1, x, x2, x3, x4, y, z} and ∂O ⊂ U .

The Buchberger algorithm uses S-polynomials up to degree 6 (without criteria up
to degree 7).

The Improved Border Basis Algorithm minimizes U at each step. At
the beginning we start with the vector space U spanned by the divisors of⋃s

i=1 Supp(fi). If we need to enlarge U , we only add ∂O.

In this way the example is computed in a 19-dim. universe and needs only one
basis extension.
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Computation of Approximate Border Bases

Input: “Empirical” polynomials f1, . . . , fs ∈ P = R[x1, . . . , xn] with s ≥ n.

Assumption: “Close by” there exists a 0-dimensional ideal I ⊂ P with
dimK(P/I) � 0.

Problem: Find I and compute a border basis!

Let V ⊂ P be a vector space, let f1, . . . , fs be a basis of V , and let
Supp(f1) ∪ · · · ∪ Supp(fr) = {t1, . . . , tr}.
Then V can be represented by the matrix

A =

 a11 · · · a1s
... ...

ar1 · · · ars


where fj = a1jt1 + · · ·+ arjtj and aij ∈ K.

Idea: Use the Singular Value Decomposition of A to filter out the polynomials
in V which are “almost zero”.

Here the “size” of a polynomial is measured by the Euclidean norm of its coefficient
vector.
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The Singular Value Decomposition (SVD)

Theorem. Given A ∈ Matm,n(R), there exist orthogonal matrices U ∈
Matm,m(R) and V ∈ Matn,n(R) and a matrix S ∈ Matm,n(R) such that

A = U S Vtr = U ·
(
D 0
0 0

)
· Vtr

where D = diag(σ1, . . . , σr) is a diagonal matrix such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0
and r = rank(A).
The numbers σ1, . . . , σr are called the singular values of A and are uniquely
determined by A.

Here the matrices U and V have the following interpretation:

first r columns of U ≡ column space of A
last m− r columns of U ≡ kernel of Atr

first r columns of V ≡ row space of A
last n− r columns of V ≡ kernel of A
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The Basis Extension Version of SVD

Let A ∈ Matm,n(R), and let A = U S Vtr be its singular value decomposition.

Let B ∈ Matm,n′(R) be a further matrix. Then there exists an SVD of the
combined matrix (A | B) of the form

(A | B) = U ′ · S ′ · (V ′)tr

where the first r columns of U are columns of U ′ ∈ Matm,m(R) and where
V ′ ∈ Matn,n(R) is of the form

V ′ =
(
V 0
0 V ′′

)
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Application: Numerically Stable Version of V +

Let V = Kf1⊕ · · · ⊕Kfr ⊂ P be a vector space of polynomials and A = (aij) its
representing matrix. Let ε > 0 be the desired numerical precision.

1. We compute the SVD of A and get A = U S Vtr.

2. Replace all singular values σi < ε by zero. The resulting matrix Ã = U S̃ Vtr

represents the polynomial vector space Vapp of smallest rank which is ”close
to” V .

3. The representing matrix of (Vapp)+ = Vapp + x1Vapp + · · · + xnVapp is of

the form (Ã | B). We use the basis extension version of SVD and get

(Ã | B) = U ′ · S ′ · (V ′)tr as above.

4. Again we replace the ”new” singular values < ε by zero. The resulting matrix
represents the polynomial vector space V +

app of smallest rank which is ”close
to” V +.

Notice that we have also computed an orthogonal basis of Vapp and an orthogonal
basis of V +

app which extends it.
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Approximate Leading Term Sets

In the Border Basis Algorithm we need a vector space basis V of V with pairwise
different leading terms and a vector space basis extension V ∪ W ′ for V ⊆ V +

with pairwise different leading terms.

Given a finite dimensional vector space of empirical polynomials V ⊂ P , we may
apply the SVD and assume that V = Vapp.

Let A = (aij) ∈ Matr,s(R) be a matrix representing V . By choosing the ONB
{f1, . . . , fs} of V provided by the SVD, we may assume that r ≥ s and A = U D
where U represents (f1, . . . , fs).
Recall that the rows of U are indexed by the terms in Supp(V ). We order the
terms such that larger terms w.r.t. σ correspond to higher rows. The first entry
> ε in each column is the approximate leading coefficient of fi, and the term
indexing its row is the approximate leading term LTapp

σ (fi).
We bring Atr into row echelon form, where we allow only pivots > ε. We make
sure that the resulting basis (f ′1, . . . , f

′
r) of V satisfies ‖f ′i‖ = 1. Then the set

LTapp
σ (V ) = {LTapp

σ (f1), . . . ,LTapp
σ (fr)}

is the approximate leading term set of V and {f ′1, . . . , f ′r} is a basis of V having
pairwise different approximate leading terms.
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The Approximate Border Basis Algorithm

Let {f1, . . . , fs} ⊂ P be a linearly independent set of s ≥ n empirical polynomials
and V = 〈f1, . . . , fs〉K. Let σ be a degree-compatible term ordering. The
following algorithm computes the Oσ{I}-border basis {g1, . . . , gν} of an ideal
I = (g1, . . . , gν) such that f1, . . . , fs are “close to” I.

(B1) Let d := max{deg(fi) | 1 ≤ i ≤ s} and U := 〈Tn
≤d〉K.

(B2) Using the SVD, compute Vapp and a unitary basis V = {v1, . . . , vr} of Vapp

having pairwise different approximate leading terms.

(B3) Compute a unitary basis extension W ′ for Vapp ⊆ V +
app so that the elements of

V ∪W ′ have pairwise different approximate leading terms.

(B4) Let W = {vr+1, . . . , vr+%} = {v ∈ W ′ | deg(v) ≤ d}.

(B5) If % > 0 then replace V with V ∪W, increase r by %, and go to (B3).

(B6) Let O := Tn
≤d \ {LTapp

σ (v1) . . .LTapp
σ (vr)}.

(B7) If ∂O 6⊆ U then increase d by one, update U := 〈Tn
≤d〉K, and go to (B3).

(B8) Apply the Final Reduction Algorithm and return its result (g1, . . . , gν).
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