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Abstract

The range of the linear operator over a polyhedron considered in this
paper is a convex subset H of a finite dimensional subspace S of the am-
bient inner product space X. According to the reduction principle the
best approximation to a point of X from H equals the best approximation
to the best approximation to that point of X from S from H. Equiva-
lent representations are presented for H in terms of ’opposite’ translated
convex cones. Explicit calculations are given for the best approximations
from finitely generated, translated convex cones. An interesting special
case is treated when such a best approximation is to a point in a - in this
paper introduced - translated polar cone. Several results are presented
to establish the position of the projection of a point of X onto S with
respect to the set H. Using the Boyle-Dykstra theorem, it is proven that
these best approximations are precisely the ones from the set H itself.
The result is finally applied to real-life data from oil industry in that a
solution is presented for a very important problem in oil - and gas produc-
tion operations called the reconciliation problem, where the contribution
of individual wells to a measured total production has to be assessed.

1 Introduction

We start by formulating the problem addressed in this paper.
A computable solution is presented for the following problem:

Given a real inner product space X with inner product 〈· , · 〉 : X × X → <,
given a finite set of linearly independent elements of X

Y = { y1, . . . , yn } (1)

and given the collections of real numbers α1, . . . , αn and β1, . . . , βn with αi < βi
and given the set

Γ = {χ ∈ <n | (χ)i ∈ [αi, βi] , i = 1, . . . , n } (2)

with [αi, βi] a closed interval in <. Consider the linear operator
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QY : Γ → X

defined by

γ 7→
n∑

i=1

γiyi

where γi = (γ)i, i.e. the ith coordinate of γ in <n. Then the range of QY is:

QY(Γ) := H = { y ∈ X | y =
n∑

i=1

γiyi , yi ∈ Y , γ ∈ Γ } (3)

Find the best approximation - see definition 1.1 below - to an element x ∈ X
from H.

Following F. Deutsch [2], the best approximation is defined in the following
way:

Definition 1.1 Let A be a nonempty subset of the inner product space X, and
let x ∈ X. An element a0 ∈ A is called a best approximation to x from A if
‖x− a0‖ = infa∈A ‖x− a‖ , where ‖ · ‖ is the norm induced by the inner product
on X.
The set of all best approximations to x ∈ X from A is denoted by PA(x). The
mapping PA from X into the subsets of A is called the metric projection onto A.
If each x ∈ X has exactly one best approximation in A, i.e. PA(x) is a singleton,
then A is called a Chebyshev set.

The following comments on the above problem statement are in order:

• The parameter set Γ in equation (2) is a polyhedron in <n - see R.
Webster [7].

• Clearly the set H in equation (3) is a closed, convex subset in the inner
product space X. The polyhedral structure of Γ in <n is passed on to H
in X through the mapping QY; this mapping is, specifically in the theory
of frames, called the pre-frame operator - see O. Christensen [1].

• The linear independence assumption for the set Y in equation (1) is not
a restriction in the sense that in case the set Y is linearly dependent, the
problem can be reformulated in terms of the maximal - in terms of
cardinality (| · |) - independent subset Y∗ of Y, by adapting the
parameters αi and βi (i = 1, . . . , |Y∗|) from the original problem
formulation to cater for the linear dependence, and setting the rest of
these parameters to zero, where without loss of generality we have
assumed that the first |Y∗| elements of Y form a maximal, linearly
independent set.
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• We do realize that a ‘toolbox solution’ for the above problem exists, i.e.
our problem can be formulated as a constrained optimization problem.
The motivation for following our analytical approach reads as follows:

1. Explicit computations of approximations from closed convex sets,
including closed convex cones are sparse in the literature, as
opposed to those from - translates of - subspaces - see F. Deutsch
[2] and J-B. Hiriart-Urruty and C. Lemaréchal [5]. Our contribution
is that we give explicit computations of the metric projection on
finitely generated convex cones, and these results are used
subsequently to compute the best approximation from the convex
set H. These results are therefore of independent interest.

2. In addition to the previously mentioned contribution, new results
are presented concerning the location determination of points with
respect to convex sets, which is of crucial importance for an efficient
calculation of the metric projection of those points onto this convex
set. Also these results are felt to be of independent interest.

3. Our result requires some direct computations, notably to accomplish
the location determination of a point with respect to the set H, but
it does not rely on searching. We show - in section 4 - that when
optimal use is made of the gemetric information contained in our
problem setting, these direct computations are of linear order in n
only. Our result may therefore compete from the computational
point of view with the toolbox methods, which rely completely on
searching.

4. In applications the elements comprising our problem statement
have in general a particular physical significance. The analytical
approach is in this vein absolutely superior to the toolbox method,
since it offers the possibility both to assess and to apply in-between
results in relation with the application under consideration. We
substantiate this claim our the final section.

The rest of this paper is organized as follows: in the next section we explore
the geometry of the best approximation problem investigated here, followed by
the explicit computation of metric projections onto elements of this geometric
setting, which are moreover of interest in their own right. These results are
the combined to give the best approximation from the convex set H. In the
final section we demonstrate the applicability of our result to real-life problems
by presenting a solution for an oil well production allocation problem from oil
industry.

The element x ∈ X, the space X, and the sets Y , H , Γ and the real numbers
α1, . . . , αn and β1, . . . , βn are fixed throughout this paper, and so we avoid un-
necessary repetitions of definitions of these objects in the different statements
that follow. Moreover two subsets of natural numbers will be used repeatedly
in this paper, and for this reason we give them a name:
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I := {1, . . . , n} , J := {1, . . . , 2n}

2 The Geometric Structure of the Projection
Problem

A characterization of best approximations from convex sets in an inner product
space is stated and proved in F. Deutsch [2]:

Theorem 2.1 Let A be a convex set in X, and let a0 ∈ A. Then

a0 = PA(x) ⇔ 〈x−a0 , a−a0〉 ≤ 0 ∀a ∈ A �

So to compute the best approximation from the set H, this theorem implies in
any case that we must have a possibility to address all elements of H. For this
to be possible at all we need to create some reference frame on H, or rather to
embed H in a convenient frame. The most straightforward way to achieve this
would seem to consider the linear span of H:

Definition 2.1

S := span(H) = span(Y) = {y ∈ X | y =
n∑

i=1

τiyi , yi ∈ Y , τi ∈ < , n ∈ N } (4)

That S is really a convenient environment for H specifically in relation with
finding the metric projection onto it, is substantiated in the following result
taken from F. Deutsch [2]:

Theorem 2.2

(1) Every closed, convex subset of S is Chebyshev.

(2) S itself is Chebyshev. �

So in particular H as a closed, convex subset of S, is Chebyshev, i.e. PH(x) is
a singleton. This invites to a best approximation route to x ∈ X from H via
S. But the question is of course whether this detour will produce PH(x) at all.
The following result shows that the answer to this question is in the affirmative:

Theorem 2.3 (The Reduction Principle) Let A be a convex subset of S.
Then

PA(x) = PA(PS(x)) �
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For a proof of this result, we refer again to F. Deutsch [2]. So to compute the
best approximation from H, we compute the metric projection onto S first -
that should not be a problem, since S is a subspace, and moreover, according
to theorem 2.2 Chebyshev - and subsequently project PS(x) onto H.

Now that we have found apparently a convenient reference frame in which H is
embedded, there is one problem still open, namely addressing all elements of H
to check the inequality in the best approximation characterization theorem 2.1,
whereas a new one has entered the stage, namely are there, from a geometric
point of view different locations of PS(x) with respect to H, since these differ-
ences may have their bearings on the computation of PH(x) according to the
reduction principle, theorem 2.3.

To start with the first question, clearly what we would need is the involve-
ment of finiteness, or finite generation in terms of the elements yi of the set Y
for the description of H. We will show that it is possible to give a geometric
description of H in terms of, in the sense indicated above, finitely generated com-
ponents. However, we need to introduce first a number of objects before stating
this result. The following definition, taken from F. Deutsch [2] is important in
connection with the shape of H:

Definition 2.2 h ∈ H is an extreme point of H, if f, g ∈ H, 0 < λ < 1, and
h = λf + (1 − λ)g implies f = g = h.

With reference to this definition, the set E of extreme points of H is introduced:

E = {r1, . . . , r2
n

| rj =
n∑

i=1

ψji yi ; yi ∈ Y , ψji = (αi ∨ βi) , j ∈ J ,

ψji 6= ψki (j 6= k) } (5)

Of special importance are the pairs of opposite extreme points of H, as well as
the concept of an adjacent extreme point of an extreme point:

Definition 2.3 {rj, rk} (rj , rk ∈ E , j 6= k ) is a pair of opposite extreme points
of H if ψji 6= ψki ∀ i. Without loss of generality it may be assumed that the set
E is ordered in such a way that {{r2j−1, r2j} | j = 1, . . . , 2n−1} are the opposite
pairs of E, for instance ψ1

i = αi , ψ
2
i = βi , . . ., and that is order is fixed.

rk ∈ E is an adjacent extreme point of rj if

{
ψki 6= ψji for exactly one i ∈ I
ψki = ψji for all other i ∈ I

The following important geometric object can be associated with an extreme
point rj ∈ E:
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Definition 2.4 The translated conical hull associated with the extreme point
rj ∈ E is, accepting a slight notational abuse - see below - given by

Kj := rj + con(Zj) (6)

where

Zj = {zj1, . . . , zjn | zji =

{
yi if ψji = αi

−yi if ψji = βi
} (7)

rj =
n∑

i=1

σjiψ
j
i z
j
i =

n∑

i=1

σki ψ
j
i z
k
i

σki = sgn(αi − ψk) , (k ∈ J , i ∈ I) (8)

and for ρ ∈ <

sgn(ρ) =

{
1 if ρ ≥ 0

−1 if ρ < 0

and

con(Zj) = { y ∈ X | y =
n∑

i=1

τiz
j
i , z

j
i ∈ Zj , τi ∈ <+ ∪ {0} }

is called the conical hull of Zj.

The notational abuse noted in definition 2.4 refers to the fact that equation (6)
should be interpreted as a direct set sum

Kj = {rj} + con(Zj)
We are consistent throughout this paper in this notational abuse with respect
to all by a singleton translated sets.
Following F. Deutsch [2], con(Zj) is called a finitely generated convex cone
because it is the conical hull of a finite number of vectors. The importance
of the translated conical hull in the present context follows from the following
proposition:

Proposition 2.1 y + con(Zj) is Chebyshev for any y ∈ S.

Proof: If con(Zj) is Chebyshev, then so is its translate - see [2]. So in view of the
first part of theorem 2.2 it only needs to be shown that con(Zj) is closed in S; this
is done in [2]. �

The next proposition gives the decompositions of H in terms of finitely gen-
erated, translated convex cones:

Proposition 2.2 Let {r2j−1, r2j} (r2j−1, r2j ∈ E) be any pair of opposite ex-
treme points of H. Then

r2j ∈ r2j−1 + con(Z2j−1)
r2j−1 ∈ r2j + con(Z2j)

H = (r2j−1 + con(Z2j−1)) ∩ (r2j + con(Z2j))
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Proof: It suffices to proof only the last statement.

H = {y ∈ X | y =
n∑

i=1

γiyi , αi ≤ γi ≤ βi}

= {y ∈ X | y =
n∑

i=1

(σ2j−1
i γi)z

2j−1
i , σ2j−1

i γi ≥ σ2j−1
i ψ2j−1

i } ∩

{y ∈ X | y =
n∑

i=1

(σ2j
i γi)z

2j
i , σ2j

i γi ≥ σ2j
i ψ

2j
i }

{y ∈ X | y =
n∑

i=1

(σ2j−1
i γi)z

2j−1
i , σ2j−1

i γi ≥ σ2j−1
i ψ2j−1

i } =

{y ∈ X | y = r2j−1 +
n∑

i=1

(σ2j−1
i γi − σ2j−1

i ψ2j−1
i )z2j−1

i ,

( σ2j−1
i γi − σ2j−1

i ψ2j−1
i ) ≥ 0} =

r2j−1 + {y ∈ X | y =
n∑

i=1

τiz
2j−1
i , τi ∈ <+ ∪ {0}} �

We now consider the problem of different locations of PS(x) with respect to
H. Clearly if PS(x) happens to be in H there is nothing to worry about, since,
because of the fact that the metric projection operator is idempotent in this
case we have PH(x) = PS(x). If PS(x) /∈ H we may distinguish two different
situations, namely where PS(x) is in the periphery of an extreme point rj ∈ E,
and where this is not the case. We can make this intuitive idea precise in the
following way:

Definition 2.5 The translated polar cone of the translated conical hull Kj as
defined in definition 2.4 is the following convex subset of S:

(Kj)0 = {s ∈ S | 〈(s − rj), zj〉 ≤ 0 ∀ zj ∈ con(Zj)} (9)

PS(x) is in the periphery of the extreme point rj ∈ E if PS(x) ∈ (Kj)0

The justification for this terminology will follow from the computation of PH(x)
for this situation, which is presented in the next section. So concerning the
positioning of PS(x) with respect to H we are left with the situation PS(x) ∈ D,
where the set D is defined by:

D = S \ ((
2n⋃

j=1

(Kj)0) ∪ H) (10)

The set D is disconnected - see J. Lee [6] - with convex components. So PS(x) ∈
D means PS(x) in one of the components of D. Of importance in relation to
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the projection onto H is of course the fact which part of H with respect to one
of its decomposing terms Kj (j ∈ J) PS(x) is facing when it is in one of the
components of D. To describe this situation we return to the adjacent extreme
points of definition 2.3:

Definition 2.6 Let j ∈ J. Then the collection of n adjacent extreme points of
rj ∈ E is denoted by Er

j

, where

Er
j

= {rk ∈ E | rk is an adjacent extreme point of rj}

The extremal subset of H associated with rj ∈ E and one of its adjacent extreme
points rk ∈ Erj

is given by:

Er
j

rk = {h ∈ H | h = λrj + (1 − λ)rk , 0 ≤ λ ≤ 1 }

In the sequel we often need to consider (n − 1) of the adjacent extreme points
of an extreme point rj. There are n possibilities in this connection, and each
choice is indicated by the parameter i ∈ I in the following way:

Cji = {rjil ∈ Er
j

| l = 1, . . . , n− 1} (11)

If PS(x) ∈ D then for some j ∈ J and for some i ∈ I the metric projection PS(x)
looks out at a subset of Kj defined by:

Definition 2.7 Given the cartesian product index set I× J, and let (i, j) be an
element of this index set. The boundary set of H associated with the pair (i, j)
is the the following subset of Kj :

Mj
i = {(Er

j

r
ji1

+ · · ·+ Er
j

r
jin−1

) \ ((
n−1⋃

l=1

{rjil}) + {rj}) | rjil ∈ Cji} (12)

The limit points in S of Mj
i that are not in Mj

i - see J. Lee [6] are given by:

Lji = Cji ∪ {rj} (13)

i.e. the interpretation of Cji from definition 2.6 is that it is the selection of
(n− 1) of the n adjacent extreme points of rj such that the remaining adjacent
point rjin of rj in Erj \Cji is not a limit point of Mj

i , or equivalently such that
for the extremal subset associated with rj and rjin we have Er

j

rjin
6⊂ Mj

i .

The usefulness of the sets {Mj
i | j ∈ J , i ∈ I } is stressed by the following result:

Proposition 2.3

(1) Let 2j − 1 , 2j ∈ J. Then

M2j−1
i ⊂ K2j ∀i ∈ I

where {r2j−1, r2j} is a pair of opposite extreme points of H.
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(2) Let j ∈ J and i ∈ I, then for any l ∈ J such that rl ∈ Er
j \ Cji we have

rl /∈ Lji

(3) Consider the pair of boundary sets {M2j
l ,M

k
m}. Then

rk ∈ L2j−1
l ∧ {r2j, r2j−1} opposite extreme points ⇔ l = m

(4) Let j , k ∈ J and i , m ∈ I, then

(rj ∈ Lki ∧ rk ∈ Ljm) ⇔ Mk
i = Mj

m ∧ i = m

(5) Consider the boundary set Mj
i . Then

Mj
i = Mjil

i ∀ jil ∈ J such that rjil ∈ Cji

(6) Let j ∈ J and i ∈ I, and let Mj
i be given by equation (12), Er

j

rjin
as in

definition 2.6, with the indices in , jin such that rjin ∈ Erj \ Cji

Mj
i ⊂ rj + span({zji1 , . . . , z

j
in−1

}) ⊂ S (14)

Er
j

rjin
= {rj + λσjinψ

j
in
zjin | 0 ≤ λ ≤ 1}

Proof: The results follow from definitions 2.3, 2.6, and 2.7. �
Equation(14) reveals another interpretation of our choice parameter i in addi-
tion to the interpretation given in definition 2.7, namely it controls which one of
the (n−1)-dimensional subspaces of S contains, when translated by the extreme
point rj the boundary set Mj

i .
The notation used in equation (14) in relation with the choice parameter i will
be used consistently throughout this paper.

This concludes our geometric description of the environment of H in our best ap-
proximation contekst. In the next section we investigate the best approximation
from the finitely generated components of H.

3 Explicit Computation of the Metric

Projection onto a Translated Convex Cone

The first step is finding the best approximation to x ∈ X from S, which, accord-
ing to theorem 2.2 is unique. To this end the following set is introduced:

B = {bi ∈ X | i = 1, . . . , n} (15)

where B is an orthonormal basis for S, i.e. S = span(Zj) = span(B) (j ∈ J),
and 〈bi, bj〉 = 1 if i = j and 〈bi, bj〉 = 0 otherwise. In particular B can be
constructed from Zj through the Gram-Schmidt orthogonalization process - see

9



e.g. F. Deutsch [2]. The best approximation to x from S is the Fourier expansion
of PS(x) relative to B:

PS(x) =
n∑

i=1

〈bi, x〉bi (16)

Thus we commute in S between the orthonormal basis B in which calculations
are easy using the Fourier-coefficients as coordinates, and the ‘natural’ basis
Zj for some j ∈ Jin which the results can be interpreted directly. Writing the
expansion of PS(x) with respect to the basis Zj as

PS(x) =
n∑

i=1

σji δiz
j
i ( δi ∈ < , j ∈ J ) (17)

with σji given in equation (8), what is sought is the relation between {σj1δ1, . . . , σjnδn}
and {〈b1, x〉, . . . , 〈bn, x〉}. This question is addressed by P. Halmos [3] and his
development is followed here:
Consider the linear transformation Tj : S → S defined by Tjzji = bi. The
matrix of this transformation with respect to the basis Zj is denoted by (tjik),
i.e. bk = Tjzjk =

∑n
i=1 t

j
ikz

j
i . It follows that:

(tjik) = G−1(zj1, z
j
2, . . . , z

j
n)(u

j
ik) (18)

(ujik) = (〈bk, zji 〉)

where G(zj1, z
j
2, . . . , z

j
n) is the Gram matrix defined by

(G(zj1, . . . , z
j
n))i,k = 〈 zjk, z

j
i 〉 ( i, k = 1, . . . , n ) (19)

Recalling that G(zj1, z
j
2, . . . , z

j
n) - [2] - and (tjik) - [3] - are invertible, it follows

that (ujik) is invertible. The relation between the sets of coordinates of PS(x)
in respectively equation (16) and (17) follows from a direct computation:

σji δi =
n∑

k=1

tjik〈bk, x〉 (20)

Note that equation (20) is equivalent to solving the normal equations - see
F. Deutsch [2]
Likewise using the inverse transformation Vj : S → S defined by zjk = Vjbk and
with the matrix of this transformation with respect to B denoted by (vjik), i.e.
zjk = Vjbk =

∑n
i=1 v

j
ikbi where

(vjik) = (ujik)
t (21)

where the superscript t denotes transposition, and so the Fourier coefficients of
PS(x) in equation (16) as function of the coefficients in equation (17) is given
by
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〈bi, x〉 =
n∑

k=1

vjikσ
j
kδk (22)

We are now ready to investigate the projection of PS(x) onto the components
of H. We start with a more geometrically flavoured, equivalent formulation of
the best approximation characterization theorem 2.1. To this end, we need to
introduce a new, important geometric object first:

Definition 3.1 Let A be a nonempty subset of X. The dual cone of A is the
set

A0 = {x ∈ X | 〈x, a〉 ≤ 0 ∀a ∈ A }

Theorem 3.1 Let h ∈ H. Then

h = PH(x) ⇔ x−h ∈ (H−h)0 �

For a proof of this theorem, see [2] or [5]. We can now give the following
sharpening of theorem 2.1:

Proposition 3.1 Let j ∈ J, and let y0 ∈ Kj . Then

y0 = PKj (PS(x)) ⇔ 〈PS(x)−y0, z〉 ≤ 0 ∀ z ∈ con(Zj) ∧ 〈PS(x)−y0, y0−rj〉 = 0

Proof: y0 = PKj (PS(x)) ⇔ (PS(x) − y0) ∈ (Kj − y0)0 ⇔
〈PS(x) − y0, z

j − (y0 − rj)〉 ≤ 0 ∀ zj ∈ con(Zj). The non-positivity condition
on the inner product holds for all zj ∈ con(Zj), and so in particular for the
following two choices:

zj = 0 ⇒ 〈PS(x) − y0, y0 − rj〉 ≥ 0
zj = 2(y0 − rj) ⇒ 〈PS(x) − y0, y0 − rj〉 ≤ 0 �

Now, with reference to the discussion in the previous section, PS(x) is in the
periphery of some extreme point rj ∈ E, then we have the following useful
corollary to proposition 3.1:

Corollary 3.1 Let PS(x) ∈ (Kj)0 for some j ∈ J.
Then PKj(PS(x)) = rj.

Proof: Substitute rj for y0 in proposition 3.1. �
In the next section, as a lemma to our main result, we give easily computable
necessary and sufficient conditions for PS(x) to be in (Kj)0.

Before investigating the situation in which PS(x) is not in H, nor in one of
the translated polar cones, we digress a little by presenting some additional
results in which polar, translated cones are compared with dual cones, and a
few results are presented concerning best approximations from dual cones. Our
motivation is on the one hand because it provides some credit for the here in-
troduced translated polar cones, and on the other had it sheds some light on
the, for computational purposes less tractable dual cones.
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Theorem 3.2 (Translated Polar - and Dual Cones) Let j ∈ J, and let Nε
be any ε-environment of 0 ∈ S. Then

(1)
(rj + con(Zj))0 = (rj + con(Zj))0 ⇔ rj = 0

(2)
(rj + con(Zj))0 6= ∅

(3)
Nε ⊂ H ⇒ H0 = ∅ ⇒ (rj + con(Zj))0 = ∅

(4)
Nε ⊂ (rj + con(Zj)) ⇒ (rj + con(Zj))0 = ∅

(5) Assume Nε 6⊂ H, and let rk ∈ E be such that
∥∥rk

∥∥ <
∥∥rj

∥∥ ∀ rj ∈ E ,
(j 6= k). Consider the set

F = H0 \ (
n⋃

i=1

((rki + con(Zki))0 | rki ∈ Er
k

) ∪ (rk + con(Zk))0)

Then
s ∈ F ⇒ PH(s) ∈ Mk

i

(6)

s ∈ H0 \ F ⇒ PH(s)

{
= rk if s ∈ (rk + con(Zk))0
= rki , rki ∈ Er

k

otherwise

Proof:

(5) The set D is disconnected - see J. Lee [6] - with convex components. If s is
in one of these components it follows from our construction that the point
of H closest to s is an element of the sum of extremal subsets of H, but
without the extreme points, it faces.

(6) If s /∈ (rk + con(Zk))0 then s ∈
⋃n
i=1((r

ki + con(Zki))0 | rki ∈ Er
k

). This
set is disconnected with components (rki + con(Zki))0. Hence s must
be in one of these components. The result now follows from corollary
3.1. �

Let us pick up our main story line again and assume that PS(x) is in some
component of the set D given in equation (10). This means that for some j ∈ J
and for some i ∈ I the metric projection PS(x) faces the set Mj

i ⊂ Kj . Before
presenting the result for computing PKj(PS(x)) with PS(x) ∈ D we need to
introduce the following subset of <n:
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Ξj =

∑n−1
i=1 (n

i)= 2n−2 elements
︷ ︸︸ ︷






〈b1,PS(x) − rj〉
· · ·
· · ·

〈bn−1,PS(x) − rj〉
0




, . . . ,




0
·
·
0

〈bn,PS(x) − rj〉








(23)

where the vectors of this set are composed from all possible choices of elements
from the two <n vectors (〈PS(x)− rj, bi〉) and 0 with at least one element from
each, and where PS(x) is given in equations (16) and (17), bi ∈ B - cf. equation
(15).

Theorem 3.3 Suppose PS(x) ∈ D, i.e. ∃ j ∈ J , i ∈ I such that the metric
projection PS(x) faces the set Mj

i ⊂ Kj. Then there exists a unique element
ξj0 ∈ Ξj such that

PKj (PS(x)) =
n∑

i=1

σji ρ0iz
j
i + rj

where (σjρ0) = ((σji ρ0i) ) ∈ <n is given by

(σjρ0) = (tjik)ξ
j
0

with (tjik) the matrix of the base transformation Tj : S → S given in equation
(18). In particular the best approximation to PS(x) from Kj is found in at most
(2n − 2) trials.

Proof: It follows from proposition 2.1 that there is a unique projection onto
Kj . This solution y0 can be represented in the following way:

y0 =
n∑

i=1

σji ρ0iz
j
i + rj =

n∑

i=1

σji (ρ0i + ψji )z
j
i (ρ0i ≥ 0) (24)

According to the orthogonality condition of proposition 3.1 for y0 to be a so-
lution, the vectors PS(x) − y0 and y0 − rj with representations with respect to
the basis Zj of S given by

PS(x) − y0 =
n∑

i=1

σji (δi − ρ0i − ψji )z
j
i (25)

y0 − rj =
n∑

i=1

σjiρ0iz
j
i

must be orthogonal to each other. Using the base transformation Vj : S → S
the vectors PS(x)− y0 and y0 − rj have the following equivalent representation
with respect to the basis B of S:

13



PS(x) − y0 =
n∑

i=1

〈bi,PS(x) − y0〉bi ( 〈bi,PS(x) − y0〉 =
n∑

j=1

vjikσ
j
i (δi − ρ0i − ψji ) )

y0 − rj =
n∑

i=1

〈bi, y0 − rj〉bi ( 〈bi, y0 − rj〉 =
n∑

j=1

vjikσ
j
i ρ0j ) (26)

PS(x) − y0 and y0 − rj are orthogonal to each other if (and only if) PS(x) − y0
is in the subspace of S that is the orthogonal complement of the subspace of
S of which y0 − rj is an element. In other words, the Fourier-coefficients of
the representation of PS(x) − y0 with respect to B that may be non-zero, must
be zero in the representation of y0 − rj with respect to B, and the other way
around. There are

∑n−1
i=1

(
n
i

)
= 2n−2 ways, with

(·
·
)

the binomial coefficient, in
which S can be split into orthogonal complements. To be specific assume that
y0 − rj ∈ span{{b1, . . . , bm}} ∧ PS(x) − y0 ∈ span{{bm+1, . . . , bn}} or equiva-
lently y0 − rj /∈ span{{bm+1, . . . , bn}} ∧PS(x)− y0 /∈ span{{b1, . . . , bm}}. This
is in turn equivalent to the following system of linear equations in the unknown
coefficients ρ0 = (ρ0i) in the representation of y0 with respect to Zj:

(vjik)(σ
jρ0) =




〈b1,PS(x) − rj〉
· · ·
· · ·

〈bm,PS(x) − rj〉
0
·
0




(27)

where the n × n matrix (vjik) is defined in equation (21). Note that the right
hand side of equation (27) is an element of the set Ξj defined in equation (23).
Recalling that (vjik), being the matrix of the base transformation Vj : S → S,
is non-singular there is a unique solution ρ0. Indeed,

(σjρ0) = (tjik)




〈b1,PS(x) − rj〉
· · ·
· · ·

〈bm,PS(x) − rj〉
0
·
0




(28)

with (tjik) given in equation (18). Of course it should be checked that y0 really
is in Kj:

y0 ∈ Kj ⇔ ρ0 ≥ 0 (29)
Inequalities for vectors are to be understood component wise. Suppose y0 is
in Kj . According to proposition 3.1 for y0 to be a solution subsequently the
non-positivity test must be passed:

14



〈PS(x) − y0, z
j〉 ≤ 0 ∀ zj ∈ con(Zj) ⇔ (30)

〈PS(x) − y0, z
j
i 〉 ≤ 0 ∀ i ∈ I ⇔

G(zj1, . . . , z
j
n)(σj(δ − ρ0 − ψj)) ≤ 0

It should be added here that the test (29) is redundant in the sense that y0 satis-
fying the orthogonality condition of proposition 3.1 and passing the test (30) is
an element of Kj . The point is that ρ0 needs to be available anyway for the test
(30), and so if y0 satisfying the orthogonality condition does not pass the test
(29), the test (30) can be skipped, and the procedure is repeated by choosing
another element from the set Ξj as right hand side of equation (27). Because the
solution set Ξj is exhaustive, the existence of the solution guarantees that one
of the elements of Ξj will satisfy both conditions of proposition 3.1; the unique-
ness of the solution implies that the procedure can be terminated as soon as this
element of Ξj is found. �

Theorem 3.3 has actually the flavour of an existence result where the existence
is proved by giving a formal construction for the solution. For, unless n is vey
small, the solution in theorem 3.3 may not render to be vey useful in practice,
since it may cost 2n − 2 trials to find the solution, given the component of D in
which PS(x) is located. But this assumption can in general not be made, and
then the computation of the best approximation adds up to at most 2n(2n − 2)
trials. So the question naturally arises what would happen if we would know
in which component of D the metric projection PS(x) is located, i.e. if we
would know which particular set Mj

i - cf. equation (12) - PS(x) is facing. From
the proof of theorem 3.3 it follows that two different translates of the sought
best approximation y0 have to be located respectively in the components of an
orthogonal decomposition of S, namely a translate with respect to PS(x) and
another one with respect to the extreme point rj ∈ E associated with the set
Mj
i . The next corollary to theorem 3.3 shows that this information gives us a

lead for a direct computation of the best approximation.

Corollary 3.3 Let j ∈ J and i ∈ I, and suppose the metric projection of x ∈ X
onto S , PS(x) is facing the set Mj

i ⊂ Kj - cf. defintion 2.7 - in one of the
components of D. Then

PKj (PS(x)) =
n∑

l=1

σjilρ0il
zjil + rj

where (σjρ0) = ((σjilρ0il
) ) ∈ <n is given by

(σjρ0) = (tjilik)




〈bji1 ,PS(x) − rj〉
· · ·
· · ·

〈bjin−1
,PS(x) − rj〉

0




15



and Bjin = {bji1, b
j
i2
, . . . , bjin} is the through Gram-Schmidt constructed orthonor-

mal basis from Zj = {zji1 , . . . , z
j
in−1

, zjin} such that bjin = zjin/
∥∥∥zjin

∥∥∥, and the

index in ∈ I is such that rjin ∈ Er
j \ Cji , i.e.

Er
j

rjin
= {rj + λσjinψ

j
in
zjin | 0 ≤ λ ≤ 1} 6⊂ Mj

i

and finally

(tjilik) = G−1(zji1 , z
j
i2
, . . . , zjin)(ujilik)

(ujilik) = (〈zjil , bik〉)

Proof: The proof is a direct consequence of theorem 3.3 combined with
proposition 2.3, and definition 2.6 �

Corollary 3.3 shows that the best approximation onto a translated convex cone
as one of the components of the set H can be computed directly, specifically
without any searching once it is known in which component of D PS(x) is lo-
cated. Hence for this result to be useful the possibility to establish the location
of PS(x) with respect to H now becomes an urgent matter. And of course, this
location determination should be established with as little computational bur-
den as possible, in any case very much less than a compuation of the ‘order of
2n(2n − 2) trials’. This important location determination problem is analysed
in the next section.

4 Location Determination of a Point with re-

spect to a Convex Set

In this section we investigate the problem of establishing the position of PS(x)
with respect to H. Despite the abundance of ‘structural regularity’in our prob-
lem setting, this turns out to be an all but trivial problem. Indeed, we regard
the results of this section as our main results. We present three theorems which
give complete solutions to this problem using different objects to solve this prob-
lem.
More specifically theorem 4.1 below uses, apart from the characterization of the
membership of a translated polar cone - see proposition 4.1 below - only ‘dis-
tances and angles’ to establish the location of PS(x) with respect to H. This
fact makes this result worth noting, despite the fact that it may require some
computational effort in actual applications. On the other hand theorems 4.2
and 4.3 below use instead of distances coordinates with respect to the basis Zj.
Here an optimal use is made of the geometric structure of our problem setting.
This solution requires lowest, possibly minimal with respect to any approach to
solve the best approximation problem addressed here, computational effort. We
give a short evaluation in this connection at the end of this section.
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To start with the first solution mentioned above, let us first establish a com-
putable solution for membership of a translated polar cone.

Proposition 4.1 Let j ∈ J, and let PS(x) =
∑n
i=1 σ

j
i δiz

j
i . Then

PS(x) ∈ (Kj)0 ⇔ G(zj1, . . . , z
j
n)(σ

j(δ − ψj)) ≤ 0

where (σj(δ − ψj)) = (σji (δi − ψji ))

Proof: The proof follows directly from definition 2.5. �

Lemma 4.1 Let j ∈ J, and let PS(x) /∈ H. Then

PS(x) ∈ (Kj)0 ⇔
∥∥PS(x) − rj

∥∥ < ‖PS(x) − h‖ ∀ h ∈ H \ {rj}

Proof: This follows from the fact that for h ∈ H \ {rj} we have
∠((PS(x)−rj)(PS(x)−h)) > π/2. �

Theorem 4.1 Let j ∈ J , i ∈ I and let PS(x) =
∑n

k=1 σ
j
kδkz

j
k. Then

(1) PS(x) ∈ H ⇔ δ ∈ Γ

(2) PS(x) ∈ (Kj)0 ⇔

{[
∥∥PS(x) − rj

∥∥ <
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E \ {rj}] ∧

[
∥∥PS(x) − rji

∥∥ <
∥∥PS(x) − rk

∥∥ ∀ rji ∈ Erj

,
rk the opposite extreme point of rj ] ∨

[
∥∥PS(x) − rjin

∥∥ <
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E \ {rjin}] ∧

[∃ rjinml ∈ Er
jin such that

∥∥PS(x) − rjkn

∥∥ <
∥∥∥PS(x) − r

jinml

∥∥∥ ,
rjkn the opposite extreme point of rjin ] ∧

[
∥∥PS(x) − rjin

∥∥ <
∥∥PS(x) − rj

∥∥] ∧

[
∥∥PS(x) − rj

∥∥ <
∥∥∥PS(x) − r

jinml

∥∥∥ ∀ rjinml ∈ Er
jin \ {rj}]} ∧

{G(zj1, . . . , z
j
n)(σ

j(δ − ψj)) ≤ 0}

(3) PS(x) /∈ H ∧ PS(x) /∈ (Kj)0 ∀j ∈ J ∧ PS(x) is facing
the set Mj

i ⊂ Kj in one of the components of D ⇔

{[
∥∥PS(x) − rj

∥∥ ≤
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E \ {rj}] ∧

[
∥∥PS(x) − rji

∥∥ <
∥∥PS(x) − rk

∥∥ ∀ rji ∈ Erj

,
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rk the opposite extreme point of rj ] ∧

[rjin ∈ Erj

is such that

〈(PS(x) − rj)(rjin − rj)〉/(
∥∥PS(x) − rj

∥∥ ∥∥rjin − rj
∥∥) =

min{〈(PS(x) − rj)(rjil − rj)〉/(
∥∥PS(x) − rj

∥∥ ∥∥rjil − rj
∥∥)

| ∀ rjil ∈ [Er
j}]} ∨

{[
∥∥PS(x) − rjin

∥∥ ≤
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E \ {rjin}] ∧

[∃ rjinml ∈ Er
jin such that

∥∥PS(x) − rjkn

∥∥ <
∥∥∥PS(x) − r

jinml

∥∥∥ ,
rjkn the opposite extreme point of rjin ] ∧

[
∥∥PS(x) − rjin

∥∥ <
∥∥PS(x) − rj

∥∥] ∧

[
∥∥PS(x) − rj

∥∥ ≤
∥∥∥PS(x) − r

jinml

∥∥∥ ∀ rjinml ∈ Er
jin \ {rj}]}

where the set Mj
i is defined by

Mj
i = {(Er

j

r
ji1

+ · · ·+ Er
j

r
jin−1

) \ ((
n−1⋃

l=1

{rjil}) + {rj}) | rjil ∈ Cji}

Proof:

(1) This follows from equation (3).

(2) We discuss first the, what we call here ‘non-degenerate case ’- see below
our description of the ‘degenerate case ’, that is we consider first the last
condition in combination with the first possibility for the distance condi-
tions. The interpretation of the shortest distance condition of PS(x) to
the extreme point rj and the condition on the distance of PS(x) to the
extreme point rk opposite to rj reads as follows: let rji ∈ Erj

be the adja-
cent extreme point of rj such that

∥∥PS(x) − rji
∥∥ <

∥∥PS(x) − rjl
∥∥ ∀ rjl ∈

Erj \ {rj, rji}. Consider the 1-dimensional subspace lrk,rji = {h ∈ H |
h = λrk + (1 − λ)rji , λ ∈ <}, where rk is the extreme point oppo-
site to rj. Note that {rk, rji} is not a pair of opposite extreme points,
and, for n > 2 they are also not adjacent with respect to one another.
From the fact that rk is opposite -, and rji is adjacent to rj , it follows -
cf. definition 2.3 - that rk =

∑n
l=1 σ

k
l ψ

k
l z
k
l , r

ji =
∑n

l=1 σ
k
l ψ

ji
l z

k
l , where

ψkl = ψjil ∀ l ∈ I \ {lm} ∧ ψklm 6= ψjilm . The distance condition on the oppo-
site extreme point rk of rj ensures that the product of the zklm coordinates
of PS(x) and rj relative with respect to the 1-dimensional subspace lrk,rji

is positive.
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Now in the ‘degenerate case ’, where the set H has in one or more di-
rections strong ‘oblique and flat ’ geometric features, it may happen that
PS(x) is in the translated polar cone (Kj)0, although an adjacent point
rji of rj is closer to PS(x) than rj; this case follows from the previous
one, basically by reversing the roles of rjiand rj . The rest follows from
proposition 4.1 and lemma 4.1.

(3) The distance conditions have basically the same interpretation as in the
previous case, except that in the degenerate case - see case (2) above -
the condition on the extreme opposite point fixes the component of D in
which PS(x) is located, knowing that PS(x) is not in H nor in any of the
translated polar cones. In the non-degenerate case the component of D
in which PS(x) is located where PS(x) is facing the set Mj

i is determined
completely by the extreme point rj and n − 1 of its adjacent extreme
points Erj

. From the geometry of our problem setting it follows that

0 ≤ ∠((PS(x) − rj), (rjil − rj)) ≤ π

and this angle is the largest for the adjacent extreme point of rj , denoted
by rjin such that Er

j

rjin
6⊂ Mj

i . The result follows from the fact that the
cosine is monotonically decreasing on [0, π]. �

We start the second approach to the location determination problem mentioned
in the introduction of this section by recalling equation (14) from proposition
2.3:

Mj
i ⊂ rj + span({zji1 , . . . , z

j
in−1

}) =: rj + span(Zj \ {zjin}) (in ∈ I) (31)

Stated in this way, equation (31) may be considered to be a defining equation
for our choice parameter i.
The next proposition collects a number of useful properties of the sets Mj

i .
Together with proposition 2.3, these results show that the sets {Mj

i} are a good
‘navigation system’ for the boundary of H in S.

Proposition 4.2

(1) Consider the pair of boundary sets {M2j
m ,Mk

m}. Then

M2j
m ∩ Mk

m = ∅ ⇔ rk ∈ L2j−1
m ∧ {r2j, r2j−1} opposite extreme points

(2) Let k ∈ I and let {Mjl

il
| l = 1, . . . , k ; il ∈ I , jl ∈ J} be a collection

of non-identical boundary sets such that there are no opposite pairs among the
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collection of extreme points {rj1 , . . . , rjk}. Then

k⋂

l=1

Mjl

il
⊂ rm + span(Zm \ {zmiln | l = 1, . . . , k ; iln ∈ I , iln 6= lmn , l 6= m}),

m ∈ J such that rm ∈
k⋂

l=1

Lj
l

il
and

iln ∈ I such that r
jl

il
n ∈ Er

jl

\ Cj
l

il

where we define span(∅) = 0

Proof:

(1) This folows from equation (31) and proposition 2.3.

(2) This follows from (1) and proposition 2.3. �

Next we need to introduce sets which form a good navigation system for the
complement of H in S.

Definition 4.1 Let j ∈ J and i ∈ I. The border set of H with respect to the
ith-coordinate of the extreme point rj =

∑n
k=1 σ

j
kψ

j
kz
j
k is the following subset of

S:

Sψj
i

= {y =
n∑

k=1

σjkτ
j
kz

j
k ∈ S | σji τ

j
i < σjiψ

j
i }

There are in total 2n different border sets in accordance with the different values
the parameter ψji can assume when the index pair (i, j) varies over the cartesian
product index set I × J.
The half-closed versions of the border sets are defined as follows:

S̄ψj
i

= {y =
n∑

k=1

σjkτ
j
kz

j
k ∈ S | σji τ

j
i ≤ σjiψ

j
i }

The importance of the border sets in our context is stipulated in the following
result:

Proposition 4.3 Let PS(x) =
∑n

i=1 σ
m
i δiz

m
i for some m ∈ J. Then

PS(x) /∈ H ⇔ ∃ k ∈ I such that ∀ l ∈ {1, . . . , k} we have

σj
l

il
δil < σj

l

il
ψj

l

il
(il ∈ I , jl ∈ J) ⇔ PS(x) ∈

k⋂

l=1

S
ψjl

il

20



Proof: PS(x) ∈ H ⇔ for any j ∈ J σji δi ≥ σjiψ
j
i ∀ i ∈ I �

The following result may be interpreted as the ‘view ’ of PS(x) /∈ H with respect
to H.

Proposition 4.4 Let k ∈ I and let PS(x) ∈
⋂k
l=1 S

ψjl

il

. Then

k⋂

l=1

S̄
ψjl

il

∩H =
k⋂

l=1

M
ψjl

il

�

We are now ready to give our results concerning the location of PS(x) /∈ H.
Because of their different character, the results for the translated polar cones,
and the components of D are presented in two separate theorems.

Theorem 4.2 Let j ∈ J, and let PS(x) =
∑n
i=1 σ

m
i δiz

m
i for some m ∈ J. Then

PS(x) ∈ (Kj)0 ⇔ ∃ k ∈ I such that [PS(x) ∈
k⋂

l=1

S
ψjl

il

∧

∃ rj =
n∑

l=1

σjl ψ
j
l z
j
l ∈

k⋂

l=1

Lj
l

il
such that G(zj1, . . . , z

j
n)(σj(δ − ψj)) ≤ 0]

Proof: The proof follows from theorem 4.2, and propositions 2.3,4.1, 4.2,4.3
and 4.4. According to lemma 4.1,∥∥PS(x) − rj

∥∥ < ‖PS(x) − rm‖ ∀ rm ∈
⋂k
l=1 Lj

l

il
\ {rj}. �

Next we consider the situation where PS(x) is in one of the components of
the set D. We have to differentiate between two cases here depending on the
fact either none of the coordinates δi - with respect to the basis Y - of PS(x) is
between αi and βi, or at least one of them is.

Theorem 4.3 Let j ∈ J, and let PS(x) =
∑n
i=1 σ

m
i δiz

m
i for some m ∈ J. Then

PS(x) is facing the set Mj
i ⊂ Kj in one of the components of D, where

Mj
i = {(Er

j

r
ji1

+ · · ·+ Er
j

r
jin−1

) \ ((
n−1⋃

l=1

{rjil}) + {rj}) | rjil ∈ Cji} ⇐⇒
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[PS(x) ∈
n⋂

l=1

S
ψjl

il

∧

PS(x) /∈ (Km)0 ∀ m ∈ J such that rm ∈ Er
j

∪ {rj} , {rj} =
n⋂

l=1

S̄
ψjl

il

∩ H ,

rjin ∈ Er
j

\ Cji such that 〈(PS(x) − rj)(rjin − rj)〉/(
∥∥PS(x) − rj

∥∥ ∥∥rjin − rj
∥∥)

= min{〈 (PS(x) − rj)(rjil − rj)〉/(
∥∥PS(x) − rj

∥∥ ∥∥rjil − rj
∥∥) | ∀rjil ∈ Er

j

}] ∨

[PS(x) ∈
k<n⋂

l=1

S
ψjl

il

∧

PS(x) /∈ (Km)0 ∀ m ∈ J such that rm ∈
l⋂

i=1

Lj
l

il
∧

rj ∈
k⋂

l=1

Lj
l

il
∧

rjin ∈ Er
j

such that rjin /∈
k⋂

l=1

Lj
l

il
]

Proof: The proof follows from propositions 2.3,4.2, 4.3 and 4.4. �

Theorem 4.1 together with corollary 3.3 would imply that our method to cal-
culate the best approximation from an arbitrary component of the set H would
still be of exponential order in n. However, combining theorem 4.2 or theorem
4.3 with corollary 3.3 leads to a computation which is of linear order in n only.
Clearly theorem 4.1 may be of theoretical value only, whereas theorems 4.2 and
4.3 may be of importance in particular in applications. Indeed, combining corol-
lary 3.3 with theorem 4.3 leads to a further reduction in the computation of the
best approximation, that we present here as a direct corollary to theorem 4.3.

Corollary 4.3 Let k ∈ {1, . . . , n−1} , PS(x) ∈
⋂k
l=1 S

ψjl

il

, PS(x) /∈ (Km)0 ∀ m ∈

J such that rm ∈
⋂k
l=1 Lj

l

il
, and let j ∈ J be such that rj ∈

⋂k
l=1 Lj

l

il
.

Let Ikn ⊂ I be such that
⋂k
l=1 S̄

ψjl

il

∩ H =
⋂k
l=1 Mjl

il ⊂ rj + span(Zj \ {zj
iln

| iln ∈

Ikn}), i.e. Ikn = {i1n, . . . ikn} , iln such that r
jl

il
n ∈ Er

jl

\Cj
l

il
- cf. proposition 4.2(2).

Then

PKj (PS(x)) =
n∑

l=1

σjilρ0il
zjil + rj

where
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σjilρ0il
= (tjikim )il




〈bji1 ,PS(x) − rj〉
· · ·
· · ·

〈bjin−1
,PS(x) − rj〉

0




for il ∈ I \ Ikn

σjilρ0il
= σjilψ

j
il

for il ∈ Ikn

where (tjikim)il denotes the il-th row of the matrix (tjikim ) defined in equation
(18), and Bjin = {bji1, b

j
i2
, . . . , bjin} is the through Gram-Schmidt constructed or-

thonormal basis from Zj = {zji1 , . . . , z
j
in−1

, zjin} such that bjin = zjin/
∥∥∥zjin

∥∥∥, and

the index in ∈ Ikn �

This completes the description of the metric projection onto the components
of H, as given in proposition 2.2. While the results of this - and the previous
section may be of independent interest, our main goal is to compute the metric
projection onto H, and so the question which is still open is how to get from
the metric projection onto the components of H to that onto H itself. On the
other hand our intuition may tell us that we have already settled this problem,
i.e. the metric project onto a component of H is the metric projection onto H
itself. In the next question we show formally that our intuition is correct.

5 The Best Approximation from a Convex Set

The Boyle-Dykstra theorem establishes the convergence of an iterative proce-
dure that computes best approximations from an intersection ∩ni=1Ai of a finite
number of closed convex subsets Ai of a Hilbert space from the best approxima-
tions of the individual sets Ai. A comprehensive treatment of this theorem can
be found in the recent book of F. Deutsch [2]. The premises of the Boyle-Dykstra
theorem correspond with the situation under consideration. Rather than giving
the general formulation of this theorem, it is presented here in terms of the
current situation. In order to do that, some straightforward notation has to be
introduced first.
Let, for n ∈ N, [n] denote ‘n modulo 2’, i.e.

[n] := {1, 2}∩ {n− 2k | k = 0, 1, 2, . . .}

For any pair of opposite extreme points of H denote the associated translated
conical hulls by K[1] and K[2] - cf. definition 2.4.

Theorem 5.1 (The Boyle-Dykstra theorem)

Construct the following sequence {xn} in S :

23



x0 = PS(x), e−1 = e0 = 0,
xn = PK[n](xn−1 + en−2)
en = xn−1 + en−2 − xn (n = 1, 2, . . .)

This sequence converges to the best approximation from H in the following
way:

lim
n→∞

‖xn −PH(x)‖ = 0

with ‖·‖ the norm on X �

For a proof of the Boyle-Dykstra theorem the excellent recent book of
F. Deutsch [2] is recommended, in which also references to different applications
of this theorem may be found. We are now ready to present the metric project
onto the set H.

Theorem 5.2 Let j ∈ J , i ∈ I and let PS(x) =
∑n

k=1 σ
j
kδkz

j
k. Then the unique

best approximation to x from H, PH(x), is given by one of the three following
cases:

(1) If PS(x) ∈ H, then PH(x) = PS(x)

(2) If PS(x) ∈ (Kj)0, then PH(x) = rj

(3) If PS(x) is facing the set Mj
i ⊂ Kj in one of the components of D, then

PH(x) = PKj (PS(x))

Proof:

(1) The claim follows from the fact that the projection operator PH is idem-
potent - see e.g. [2].

(2) PS(x) ∈ (Kj)0 ⇒ PKj (PS(x)) = rj. Without loss of generality it may
be assumed that j is odd, i.e. j = 2k − 1 for some k ∈ {1, . . . , 2n−1}.
But rj = r2k−1 ∈ K2k - cf. proposition 2.2, and H = K2k−1 ∩ K2k. The
result now follows from the Boyle-Dykstra theorem, because the sequence
{xn} constructed in the theorem converges immediately to the constant
sequence {rj}, that is with reference to theorem 4.1 xi = rj , e2i−1 =
PS(x) − rj , e2i = 0 ∀ i ≥ 1

(3) Without loss of generality it may again be assumed that j is odd, i.e. j =
2k − 1 for some k ∈ {1, . . . , 2(n−1)}. Using corollary ?? PK2k−1(PS(x)) ∈
M2k−1
i ⊂ K2k−1 is computed. But PK2k−1(PS(x)) ∈ K2k, since, by propo-

sition 2.3, M2k−1
i ⊂ K2k. The result follows in the same way as in the

previous case again from the Boyle-Dykstra theorem, that is the sequence
{xn} constructed in the theorem converges immediately to the constant se-
quence {PK2k−1(PS(x))} �
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The proof confirms the idea suggested at the end of section 4 that it only needs
to be trivially confirmed that the metric projections onto the components of H
are the ones on H itself.

Figure 1 below is meant to give a ‘mental picture’ to illustrate theorem 5.2,
that is, although not a correct, rigorous representation, the figure does show the
working of the theorem in an intuitively appealing way. Also note the ‘pretty’
geometric structure of our problem setting revealed by this figure. The idea
of figure 1 is that it depicts a number of possible locations for PS(x) in the
subspace S, followed by the projection onto H, which is suggested by the arrows
in the figure, except of course for the situation where PS(x) ∈ H.

Figure 1: Illustration of metric projection onto H

Theorem 5.2 gives a complete characterization of the best approximation to an
element of an Inner Product Space from a convex subset in that space. In the
next and final section we describe shortly a real-life application of this theorem.
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6 Application: Production Allocation in
Oil Industry

A common situation in production operations in oil industry is that a number of
wells, say n wells, produce into a large piece of tubing called the bulk header, and
from this header the common production is transported to the bulk separator,
where the different phases, namely oil, water and gas, are separated, and the
production rates of the separated phases are measured. The separated phases
are transported further downstream.
Estimates, or rather predictions of the productions from the individual wells are
obtained through a mathematical model for the production of the well. This
model is established through a well test. A well test for, to be specific, well i of a
group of wells is an experiment where the well is decoupled from the bulk header
and connected to the test header, which is connected to the test separator. Here
again the phase productions are measured, but this time those of well i only. -
The phase productions from the well on test are recombined downstream from
the test separator, and combined with the common bulk production from the
other wells. - The well model is a mapping from quantities that drive the pro-
duction, notably different types of pressures, to the phase-productions from the
well. During the well test both the quantities in the domain of this mapping
and those in its range are measured, and this information is used to establish
this mapping from the measured data. When the well is back in production
status the driving quantities are still available, and by processing these with the
well model, predictions are obtained of the productions of the concerning well.
The idea of the production allocation problem is now to establish the contri-
bution from the individual wells to the total production. Because the wells
influence one another during production, the total production does in general
not equal the sum of the separate predicted productions. In other words we have
to establish the best approximation to the total prduction from the - predicted
- individual well productions. In terms of the notation of the problem descrip-
tion in section 1 we have the following correspondence - we confine ourselves to
considering one type of phase productions only:

total production : x ∈ X
production of well i : yi ∈ Y (32)

number of wells : n

admissible combinations : H ⊂ Y

As for the ‘admissible combinations’, we note that negative contributions are
not allowed. However somewhat counter intuitive may be the fact that the a
contribution larger than one may be allowed. This means that the production
from a certain well may be stimulated when it is producing in conjuction with
one or more other wells. This may in particular occur in so-called multi-zone
wells, where the individual wells are actually different zones in the reservoir that
are visited by the production tubing of the multi-zone well. There are in general
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strong interactions between the different zones. On the other hand a multiple
of the production because of interactions is generally highly unlikely, and will
usually be assessed as ‘not admissible’.

Figure 2 below shows the total production from a mult-zone well, consisting
of two zones A and B. let us agree to call the production from zone A y1, and
that from zone B y2. The productions from the separate zones are calculated
using their well models, and are predictions of their performance when the zones
are producing separately.
It follows from figure 2 below that if zone B is going to contribute to the to-
tal production it will be at the expense of the performance of zone A when it
produces alone; in another perspective it may be expected that zone A pushes
away zone B almost completely when there are producing simultaneously.

Figure 2: Total production x, and individual productions y1 and y2
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When calculating PS(x) we find

PS(x) = 1.05y1 − 0.18y2

The negative contribution from y2 is of course physically impossible. A more
complete assessment of this result is possible after defining the set H of admissi-
ble combinations. In production operations practice the position of PS(x) with
respect to H may have diagnostic value in the sense that certain actions may
be taken, or conclusions may be drawn on the basis of this ‘relative ’position of
PS(x). But for this it is imperative that a judicious choice is made of the ad-
missible parameters via the ‘shape ’parameters α and β in the defining equation
(3) of H. The table below shows the effect on PH(x) resulting from different
choices for the shape parameters α and β. In order to appreciate the results
presented here, we specify the representations of extreme points that have been
used in the calculations:

r1 = α1y1 + α2y2

r2 = β1y1 + β2y2

r3 = α1y1 + β2y2

r4 = β1y1 + α2y2

Exp num [α1;α2] [β1; β2] view of PS(x)
1 [.1 ; .05] [2 ; 1] M1

2 = M3
2

2 [.1 ; .1] [.5 ; 1] (K2)0
3 [0 ; 0] [.5 ; 3] M2

1 = M3
1

Figure 3 below is a graphical representation of the different situations considered
in the table.

Our choices of the shape parameters have admittedly been subordinate to a
demonstration effect. In particular the choice made for the shape parameters
in the third experiment is ‘absurd’in the sense that the approximated total
production is significantly larger than the measured total production. This is an
illustration of such a ‘not admissible’situation mentioned above when allowing
the production rate contribution to be a multiple of the single contribution.
In any case, these results nevertheless show the necessity for a sensible choice
of the shape parameters. One way to do this is to cast the above problem in
a totally different mathematical setting, specifically in terms of ideal theory as
part of commutative algebra. The total production is then a member of the ideal
generated by the separate productions, assuming polynomial representations
for the well models. This leads to the following representation for the total
production

x =
n∑

i=1

siyi

where the si are polynomials, modeling the interactions between the wells. The
si are subsequently used to construct the ‘physically correct ’shape parameters.
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Figure 3: Total production x ,PS(x), and PH(x) for various choices of the shape
parameters

This new approach is beyond the scope of the present paper; first results in this
direction may be found in [4].
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