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Abstract. The Border Basis Algorithm (BBA) still suffers from the lack of
analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this
paper we develop a signature based technique which provides a first remedial

step: signature bounds allow us to recognize multiple reductions of the same
ancestor polynomial. The new signature based algorithm is also combined
with the Boolean BBA for ideals of Boolean polynomials. Experiments show
that it is at least 5 times faster than the standard (Boolean) BBA.

1. Introduction

One of the central algorithms of computer algebra is the algorithm for computing
Gröbner bases introduced by B. Buchberger in 1965 (cf. [2]). Significant efforts have
been expended to improve its performance. The best current implementations use
signature based versions of Buchberger’s algorithm, the first of which was J.-C.
Faugere’s algorithm F5 (cf. [4]). Nowadays an entire zoo of such algorithms has
been developed and their behavior has been studied thoroughly (see for instance [3]).

On the other hand, the Border Basis Algorithm (BBA), a framework for which
was introduced in [10] and whose details were worked out in [7], is much less re-
searched. In [6], the authors considered some optimizations of BBA for ideals
of Boolean polynomials. However, for interesting ideals originating from crypto-
graphic attacks, these optimizations still proved to be insufficient to produce run-
ning times comparable with optimized implementations of Buchberger’s algorithm.
The main reason for this is that the current implementations of the BBA still lack
analogues of Buchberger’s criteria for avoiding unnecessary reductions of critical
pairs.

Our main goal in this paper is to go the first step in the direction to construct
border basis analogues to these criteria. More specifically, let I = ⟨f1, . . . , fs⟩
be the 0-dimensional ideal whose border basis we are calculating, and let V be
the current tuple of polynomials generating a vector space which will contain the
desired border basis eventually. To each polynomial g that we have to consider, we
assign a signature bound which is a pair (t, i) with a term t and 1 ≤ i ≤ s that
remembers the multiple tfi of the input polynomial fi whose (linear) reduction
is g . Thus, if the same signature appears again, we can avoid the reduction of g
against the polynomials in V because we know that it reduces to zero. As we shall
see, in this way we avoid many repetitions and the algorithm becomes significantly
faster.

The paper is structured as follows. In Section 2 we recall the definition of border
bases and the standard version of the Border Basis Algorithm (BBA). In fact,
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we provide the slightly optimized version given in [7], Prop. 21. Then Section 3
contains the heart of the paper. For an element g of the ideal generated by a tuple
of polynomials Φ = (f1, . . . , fs), we introduce the notions of a signature bound
and the signature of g with respect to Φ. More precisely, a signature bound is a
tuple (t, i) with a term t and an index 1 ≤ i ≤ s such that tfi occurs among
the summands having maximal leading term in a representation g =

∑
i citifji

with scalars ci and terms ti . A signature bound allows us to recognize multiple
occurrences of the same or equivalent polynomials during the reduction phase of
the BBA. This idea is elaborated in the Signature Based BBA (SBBA), and in
particular in the new stable span procedure SStab (see Algorithm 4). One nice
feature of the SBBA is the possibility to choose a selection strategy for the next
signature bound to work on, a freedom which deserves to be explored further.

In Section 4 we look at the Boolean BBA (BBBA) introduced in [6] and com-
bine it with the new signature based technique. The result is the Signature Based
Boolean BBA (SBBBA) of which we implemented an ApCoCoA prototype (see [1])
and an optimized C++ version. The details of the optimizations and implemen-
tation tricks for the C++ version are explained in Section 5. Finally, in Section 6
we provide some experiments and timings. We tested the new algorithms for some
polynomial ideals representing algebraic attacks and algebraic fault attacks in cryp-
tography. These experiments show that SBBBA is about 5 times faster than BBBA,
that the performance gap between border basis and Gröbner basis techniques has
been narrowed, and that SAT solving is several magnitudes faster for this kind of
example.

Unless explicitly stated otherwise, we use the basic definitions and notation of [8]
and [9]. The terminology surrounding the Border Basis Algorithm is explained
in [7], and for the Boolean BBA we refer to [6]. The prototype implementation of
our algorithms were done using the computer algebra system ApCoCoA (see [1]).

2. The Standard Border Basis Algorithm

In the following we let K be a field, P = K[x1, . . . , xn] a polynomial ring over K ,
and f1, . . . , fs ∈ P polynomials which generate a 0-dimensional polynomial ideal
I = ⟨f1, . . . , fs⟩ . The goal of the Border Basis Algorithm (BBA) is to compute a
special system of generators of I which corresponds to a K -basis of the residue
class ring R = P/I of the following type.

Definition 2.1. Let Tn = {xα1
1 · · ·xαn

n | αi ≥ 0} be the monoid of terms in P .

(a) A (finite) subset O of Tn is called an order ideal if it is divisor closed,
i.e., if t ∈ O and t′ | t implies t′ ∈ O .

(b) Let t1, . . . , tk ∈ Tn . Then the order ideal

⟨t1, . . . , tk⟩OI = {t′ ∈ Tn | t′|ti for some i ∈ {1, . . . , k}}

is called the order ideal spanned by t1, . . . , tk . The terms t1, . . . , tk are
called the cogenerators of this order ideal.

(c) Given an order ideal O in Tn , the set ∂O = (x1O∪· · ·∪xnO)\O is called
the border of O .

(d) Given an order ideal O in Tn , the order ideal O+ = O ∪ ∂O is called the
(first) extension of O .
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The following example illustrates these definitions.

Example 2.2. In the polynomial ring P = K[x1, x2] , the set O = {1, x1, x2, x1x2}
is an order ideal. We have O = ⟨x1x2⟩OI , i.e., the order ideal O is cogenerated
by x1x2 . Moreover, the border of O is ∂O = {x2

1, x
2
1x2, x1x

2
2, x

2
2} , and the exten-

sion of O is

O+ = O ∪ ∂O = {1, x1, x2, x1x2, x
2
1, x

2
1x2, x1x

2
2, x

2
2}

One way to construct order ideals is to take complements of monomial ideals.
E.g., for every term ordering σ , the set Oσ(I) = Tn \ LTσ(I) is an order ideal.
Given an order ideal O , we are looking for the following kind of special generating
system of I .

Definition 2.3. Let O = {t1, . . . , tµ} be an order ideal in Tn , and let ∂O =
{b1, . . . , bν} .

(a) A set of polynomials G = {g1, . . . , gν} is called an O -border prebasis
if gj is of the form gj = bj −

∑µ
i=1 cijti with cij ∈ K for j = 1, . . . , ν .

(b) An O -border prebasis G is called an O -border basis of the ideal I = ⟨G⟩ ,
if the residue classes of the terms in O form a K -basis of P/I .

Let us examine this definition in the setting of the above example.

Example 2.4. Let P and O be defined as in Example 2.2.

(a) The set G = {g1, g2, g3, g4} , where g1 = x2
1 − 1, g2 = x2

1x2 − x1x2 , g3 =
x1x

2
2 , and g4 = x2

2 , is an O -border prebasis of I = ⟨G⟩ . However, it is not
an O -border basis, since x2g1 − g2 = x1x2 − x2 ∈ I shows that x2 = x1x2

in P/I .
(b) The set H = {h1, h2, h3, h4} , where h1 = x2

1 − 1, h2 = x2
1x2 − x2 , h3 =

x1x
2
2 , and h4 = x2

2 , is an O -border basis of J = ⟨H⟩ = ⟨x2
1 − 1, x2

2⟩ , since
O is a K -basis of P/I by Macaulay’s Basis Theorem (cf. [8], Thm. 1.5.7).

If an order ideal is of the form Oσ(I) for some term ordering σ , then I has
an Oσ(I)-border basis and this border basis contains the reduced σ -Gröbner basis
of I (see [9], Prop. 6.4.18). The goal of the Border Basis Algorithm (BBA) is to
compute such a border basis. To formulate it, we use the following terminology.

Definition 2.5. Let p ∈ P \{0} , and let G = (g1, . . . , gk) be a tuple of polynomials
gi ∈ P \ {0} .

(a) The polynomial p is called LTσ -independent from G if LTσ(p) is not
one of the leading terms LTσ(g1), . . . ,LTσ(gk).

(b) The tuple G is called LTσ -independent if the leading terms LTσ(g1),
. . . , LTσ(gk) are pairwise distinct.

In the following algorithm, the procedure FinalReduction(V,O) refers to the
one defined in [7], Prop. 17, and the procedure Stab(V,U) refers to the one defined
below (see also [7], Prop. 13). For a tuple V = (v1, . . . , vk), we let LTσ(V ) =
(LTσ(v1), . . . ,LTσ(vk)) and denote by ⟨LTσ(V )⟩ the monomial ideal generated by
these terms.

The main work in this algorithm is performed by the procedure Stab(V,U)
defined below. Recall that for a tuple of polynomials V we let V + be the concate-
nation of V with x1V, . . . , xnV .
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Algorithm 1 Standard Border Basis Algorithm (BBA)
Input: Generators {f1, . . . , fs} of a 0-dimensional ideal I and a degree compatible
term ordering σ .
Output: The order ideal O = Oσ(I) and the Oσ(I)-border basis G of I .

1: Let U = ⟨Supp(f1) ∪ · · · ∪ Supp(fs)⟩OI .
2: Let V be an LTσ -independent K -vector space basis of ⟨f1, . . . , fs⟩K .
3: repeat
4: Execute the procedure Stab(V,U) and get a new pair (V,U).
5: Let O := U \ ⟨LTσ(V )⟩ .
6: Let Uold := U and U := U+ .
7: until ∂O ⊂ Uold

8: Apply FinalReduction(V,O) and return its output (O, G).

Algorithm 2 (Stab)
Input: An LTσ -independent tuple of polynomials V = (v1, . . . , vk) and an order
ideal U .
Output: A new pair (V,U).

1: repeat
2: Calculate a tuple W such that the concatenation V ∪W is an LTσ -indepen-

dent K -basis of ⟨V +⟩K .
3: repeat
4: W ′ := {w ∈ W | LTσ(w) ∈ U}
5: U ′ := ⟨

∪
w∈W ′ Supp(w)⟩OI \ U

6: U := U ∪ U ′

7: until U ′ = ∅
8: Append the elements of W ′ to V .
9: until W ′ = ∅

10: Return (V,U).

For a proof of the correctness of the Standard BBA, we refer the reader to [7],
Prop. 21. The order ideal U in this algorithm is commonly called the (computa-
tional) universe. The main step, which is Step 2 in Stab(V,U), consists of re-
peated Gaußian type reductions in the vector space ⟨U⟩K . Hence its cost depends
strongly on the size of U and it is imperative to keep that size small. Unfortunately,
replacing U by U+ in Step 6 increases U rapidly. Another major drawback of the
Standard BBA is that the number of new polynomials which have to be reduced in-
creases rapidly. One reason is that we do not recognize duplicities such as reducing
both x1g2 and x2g1 , although g1 is the reduction of x1fi and g2 is the reduction
of x2fi for the same i . The central idea of the Signature BBA is to avoid this extra
work and thus keep V and U as small as possible at all times.
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3. The Signature Based BBA

In the setting of the preceding section, we choose a degree compatible term
ordering σ . Let us define what we mean by the signature of a polynomial in I .

Definition 3.1. Let I = ⟨f1, . . . , fs⟩ be a 0-dimensional polynomial ideal, let
Φ = (f1, . . . , fs), and let g ∈ I \ {0} .

(a) Given representation g =
∑ℓ

i=1 citifji with ci ∈ K \{0} , ti ∈ Tn , and ji ∈
{1, . . . , s} , let k ∈ {1, . . . , ℓ} be such that LTσ(tkfjk) = maxσ{LTσ(tifji) |
i = 1, . . . , ℓ} . Then we call (tk, jk) a signature bound for g .

(b) Consider all representations g =
∑ℓ

i=1 citifji as above for which the term
max{LTσ(t1fj1), . . . ,LTσ(tℓfjℓ)} is minimal with respect to σ . Among
these, let jm ∈ {1, . . . , s} be the minimal value of ji which shows up in
a summand cmtmfjm having the maximal leading term. Then the pair
SigΦ(g) := (tm, jm) is called the signature of g with respect to Φ. If the
tuple of generators Φ is clear, we simply write Sig(g).

For a deeper understanding of the meaning of signature bounds and signatures,
we refer the reader to the related notions of σ -degree and σ -leading form in [8],
Section 2.3. Given a polynomial g ∈ I \{0} with Sig(g) = (t, i) and j ∈ {1, . . . , n} ,
we also write xj ·Sig(g) instead of (xjt, i). The notation can be generalized to tuples
of polynomials as follows.

Definition 3.2. Let G = (g1, . . . , gk) be a tuple with gi ∈ I \{0} for i = 1, . . . , k ,
and let SG = (s1, . . . , sk) be a tuple of signature bounds for G .

(a) The tuple Sig(G) = (Sig(g1), . . . , Sig(gk)) is called the signature of G .
(b) The tuple S+

G is now defined as follows:

S+
G = (s1, . . . , sk, x1s1, . . . , x1sk, x2s1, . . . , x2sk, . . . , xns1, . . . , xnsk)

Subsequently, we order signature bounds as follows.

Definition 3.3. Let t1, t2 ∈ Tn and i, j ∈ {1, . . . , s} . Then we define

(t1, i) ≼ (t2, j) ⇔

{
LTσ(t1fi) <σ LTσ(t2fj), or

LTσ(t1fi) = LTσ(t2fj) and i ≤ j

Notice that this implies Sig(xig) ≼ xi Sig(g) for i ∈ {1, . . . , n} and g ∈ I \ {0} ,
because multiplying the minimal representation of g by xi yields one representation
of xig , but not necessarily the minimal one.

The main idea of the Signature Based Border Basis Algorithm (SBBA) below is
to avoid unnecessary reductions in Step 2 of Algorithm 2. For every component vi
of the tuple V we store a signature bound Sig(vi) ≼ (ti, ji) such that v can be
obtained by reducing the polynomial tifji with other elements of V . In other
words, the signature remembers the “ancestor” tifji from which vi was derived.
Now, if we encounter another element w with signature (ti, ji), we can show that w
reduces to zero using V . Hence w need not be considered in the calculation of the
basis extension in Step 2 of Algorithm 2. A typical case of this occurs if v is the
reduction of x2fi , if x1v has already been reduced, and if we now consider x2w ,
where w is a reduction of x1fi . When we discover that the signature bounds of
x1v and x2w are both (x1x2, i), we can skip the reduction of x2w . Thus we can
avoid a lot of duplicate work. This idea leads to Algorithm 3 (SBBA).
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Algorithm 3 Signature Based Border Basis Algorithm (SBBA)
Input: A tuple Φ = (f1, . . . , fs) which generates a 0-dimensional ideal I and a
degree compatible term ordering σ .
Output: The order ideal O = Oσ(I) and the Oσ(I)-border basis G of I .

1: Let U = ⟨Supp(f1) ∪ · · · ∪ Supp(fs)⟩OI .
2: Calculate an LTσ -independent K -vector space basis V = (v1, . . . , vk) of

⟨f1, . . . , fs⟩K .
3: Let SV := ((1, 1), . . . , (1, k)) and S0 := ∅ .
4: repeat
5: Execute SStab(V, SV , S0, U) and get a new tuple (V, SV , S0, U).
6: Let O := U \ ⟨LTσ(V )⟩ .
7: Let Uold := U and U := U+ .
8: until ∂O ⊂ Uold

9: Apply FinalReduction(V,O) and return the result.

This algorithm is clearly structured as the usual BBA, but it uses a different
stabilization procedure given by Algorithm 4.

Proposition 3.4. Algorithm 3 (SBBA) computes the order ideal Oσ(I) and the
Oσ(I)-border basis of the 0-dimensional ideal I = ⟨f1, . . . , fs⟩K .

Proof. If we compare Algorithm 3 to Algorithm 1, we see that the only non-trivial
difference occurs in the stabilization procedure, where SStab performs the com-
putation of the basis extension W of Step 2 of Stab in a specific way. Thus we
have to prove that SStab returns a tuple (V, SV , S0, U) where U is the (possibly
enlarged) universe containing the supports of all polynomials in V , and where V is
an LTσ -independent basis of the U -stable span of the input tuple V . The former
condition is clearly enforced by Steps 20-26 of SStab. The latter condition means
⟨V +⟩K ∩ ⟨U⟩K = ⟨V ⟩K (see [7], Def. 10). To verify it, we need to look at the main
differences between Stab and SStab.

One difference is that in the first inner repeat loop of SStab, we are not con-
sidering all candidates xivj and reducing them K -linearly against V ∪W ′ to find
new elements of the stable U -span. Instead, we only consider the candidates xivj
for which the corresponding signature bound sℓ is not in SV ∪ SW ′ ∪ S0 . There-
fore we need to show that the other candidates xivj do not yield new elements of
⟨V ∪W ′⟩K ∩ ⟨U⟩K . The second difference is that we use V ∪W ′ ∪ B to reduce a
candidate xivj , in contrast to using only V ∪W ′ .

To address these differences, we first look at the case sℓ ∈ S0 . A signature
bound is put into S0 in Step 11 of SStab only if the corresponding element xivj
reduces to zero using V ∪ W ′ ∪ B . If it reduces to zero using V ∪ W ′ only, we
note that, after we have finished all iterations of the inner repeat loops of SStab,
we have extended V to a basis of ⟨V +⟩K ∩ ⟨U⟩K . Hence, if we multiply a zero
reduction vj −→ 0 by an indeterminate xi , we get a zero reduction xivj −→ 0
which still uses elements of the new tuple V . Thus we can replace the tuple of
signature bounds S0 representing elements that reduce to zero by the tuple (S0)

+

in Step 28 of SStab.
On the other hand, suppose that the above reduction of xivj −→ 0 involves

an element of B . Then we know that xivj −→ xiw −→ 0 for some intermediate
element xiw satisfying LTσ(xiw) /∈ U . However, this implies that we had vj −→
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Algorithm 4 (SStab)
Input: An LTσ -independent tuple V = (v1, . . . , vk) of polynomials, a tuple of
signature bounds SV = (s1, . . . , sk), another tuple of signature bounds S0 , and an
order ideal U .
Output: A new tuple (V, SV , S0, U).

1: repeat
2: V ∗ := (x1v1, . . . , x1vk, . . . , xnv1, . . . , xnvk)
3: SV ∗ := (x1s1, . . . , x1sk, . . . , xns1, . . . , xnsk)
4: Let B := ∅ , let W ′ := ∅ , and let SW ′ := ∅ .
5: repeat
6: Choose a signature bound sℓ in SV ∗ and remove it from SV ∗ .
7: if sℓ /∈ SV ∪ SW ′ ∪ S0 then
8: Reduce the ℓ -th component xivj of V ∗ K -linearly against V ∪W ′ ∪B

and get a polynomial v′ .
9: if v′ = 0 then

10: Append sℓ to S0 .
11: end if
12: if v′ ̸= 0 and LTσ(v

′) ∈ U then
13: Append v′ to W ′ and sℓ to SW ′ .
14: end if
15: if v′ ̸= 0 and LTσ(v

′) /∈ U then
16: Append v′ to B .
17: end if
18: end if
19: until SV ∗ = ∅
20: U := U ∪ ⟨

∪
w∈W ′ Supp(w)⟩OI

21: repeat
22: W ′′ := {w ∈ B | LTσ(w) ∈ U}
23: Move the elements of W ′′ from B to W ′ and the corresponding signature

bounds from SB to SW ′ .
24: U ′ := ⟨Supp(w) | w ∈ W ′′⟩OI \ U
25: U := U ∪ U ′

26: until U ′ = ∅
27: Append W ′ to V and SW ′ to SV .
28: S0 := S+

0

29: until W ′ = ∅
30: return (V, SV , S0, U)

w −→ 0 and LTσ(w) /∈ U in a previous iteration, in contradiction to the fact that
the signature bound for vj was put into S0 .

Next we prove that the elements xivj for which the corresponding signature
bound sℓ is in SV ∪ SW ′ do not yield new elements of ⟨V ∪ W ′⟩K ∩ ⟨U⟩K . Let
sℓ = (t̃, k). We know that, using elements of V ∪W ′ , the element t̃fk reduces to
an element ṽ of V ∪W ′ . Since ṽ has been put into V or W ′ before, the element
t̃fk actually reduces to zero using V ∪W ′ . Moreover, sℓ is also of the form xism
where sm is a signature bound for vj . Writing sm = (t̂, r), we get a reduction

xit̂fr −→ xivj using elements of xiV . If during this reduction we only use elements



8 JAN HORÁČEK, MARTIN KREUZER, AND ANGE-SALOMÉ MESSENG E.

of V ∪W ′ , we get from xit̂fr = t̃fk ∈ ⟨V ∪W ′⟩K that we have xivj ∈ ⟨V ∪W ′⟩K ,
and thus xivj is not a new element of the U -stable span of V .

Now suppose that, during the reduction xit̂fr −→ xivj , we arrive at an ele-
ment xiw with LTσ(xiw) /∈ U . Again there are two cases. Starting from xiw ,
if the remaining reduction steps use only elements of V ∪ W ′ ∪ B , then the ele-
ment xivj is contained in V = ⟨V ∪ W ′⟩K ⊕ ⟨B⟩K , and the claim follows from

V ∩ ⟨U⟩K = ⟨V ∪W ′⟩K ∩ ⟨U⟩K .
Finally we need to consider the case of an intermediate element xiw̃ which cannot

be reduced further using V ∪W ′ ∪ B . Then the reduction t̂fr −→ w̃ involves at
least one step, because we have xit̂fr ∈ ⟨V ∪ W ′⟩K and LTσ(xiw̃) /∈ U . Hence
LTσ(w̃) is smaller than LTσ(vj) and w̃ is a linear combination of elements of V
which have smaller leading terms. As these elements will be considered in other
iterations of the algorithm, the element xivj can be skipped. Notice that we are not
getting into a loop of promises here, since the elements which we promise to treat
in other iterations have a strictly smaller leading term. Furthermore, we remark
that when we reach an element whose leading term is LTσ(w̃) during one of these
iterations, that element will be appended to B and not constitute a new element
of ⟨V ∪W ′⟩K ∩ ⟨U⟩K .

The second inner repeat loop in SStab merely moves some elements of B
into W ′ because the enlargement of the universe in Step 20 has brought their
leading term into U . Altogether, it follows that the inner repeat loops of SStab
correctly calculate an LTσ -independent basis V ∪W ′ of ⟨V +⟩K ∩⟨U⟩K . Therefore
the outer repeat loop correctly calculates a (possibly enlarged) universe U and
the stable U -span of the input tuple V . �

Let us point out that the elements sℓ in Algorithm 4 are not necessarily the
exact signatures of the corresponding polynomials xivj . Instead, they are upper
bounds by the observation following Definition 3.3. For the algorithm, this does
not matter, and in practice sℓ = Sig(v′) holds most of the time.

A particularly nice feature of the SBBA is that we are free to choose a selection
strategy in Step 6 of SStab for the next signature to work on. Suitable choices could
be the smallest untreated signature, the element xivj with the smallest leading
term, the element xivj having the fewest terms in its support, a degree compatible
strategy, or any combination of these. Future experiments have to indicate the best
choice. A comparison to the analogous choice of a selection strategy in Buchberger’s
Algorithm indicates that this choice is likely to affect the running times of the
algorithm substantially. It is quite conceivable that the best selection strategy
depends on the example under consideration.
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4. The Signature Based BBA for Boolean Polynomials

In this section we construct a signature based version of the BBA for Boolean
polynomials. In particular, we show that we can combine the improvements of-
fered by the signature based algorithm with the optimizations of the Boolean BBA
introduced in [6].

Let us recall the setting used by the Boolean BBA. For the base field, we use
the field of two elements K = F2 . The ideal F = ⟨x2

1 + x1, . . . , x
2
n + xn⟩ is called

the field ideal since it is the vanishing ideal of Kn . The ring

R = K[x1, . . . , xn]/⟨x2
1 + x1, . . . , x

2
n + xn⟩.

is called the ring of Boolean polynomials. Its elements are represented by poly-
nomials whose support is contained in Sn , the set of squarefree terms. An arbi-
trary polynomial f represents the same Boolean polynomial as its normal form
NFF (f) with respect to the field ideal. Ideals in R are represented by ideals in
P = K[x1, . . . , xn] containing F . A border basis G of a 0-dimensional ideal in P
containing F has the shape G = Gsf ∪ {xit + t | i ∈ {1, . . . , n}, t ∈ Oi} where Oi

is the set of terms in O divisible by xi . Thus it suffices to compute the part Gsf

of G whose border terms are in Osf = O ∩ Sn .
For the convenience of the reader, we recall the following algorithm which com-

bines the Boolean BBA (cf. [6], Alg. 4.3) with the improvements provided by the
U-Extension Algorithm (cf. [6], Alg. 5.3 and 5.4).

Algorithm 5 Optimised Boolean BBA (OBBA)
Input: Generators {f1, . . . , fs} of a 0-dimensional ideal I containing F and a
degree compatible term ordering σ .
Output: The squarefree subset Oσ(I)

sf of Oσ(I) and the corresponding part of the
Oσ(I)-border basis of I .

1: Let U = ⟨NFF (Supp(f1)) ∪ · · · ∪NFF (Supp(fs))⟩OI .
2: Calculate a tuple V which contains an LTσ -independent K -vector space basis

of ⟨NFF (f1), . . . ,NFF (fs)⟩K .
3: repeat
4: Execute the procedure OStab(V,U) and get a new pair (V,U).
5: Let O := U \ ⟨LTσ(V )⟩K .
6: Let Uold := U and U := U ∪ ⟨∂Osf⟩OI .
7: until ∂Osf ⊂ Uold

8: Apply FinalReduction(V,O) and return the result.

Here the procedure OStab(V,U) (see Algorithm 6) uses the squarefree exten-
sion V (+) of a tuple V = (v1, . . . , vk) which is defined by

V (+) = (v1, . . . , vk,NFF (x1v1), . . . ,NFF (x1vk), . . . ,NFF (xnv1), . . . ,NFF (xnvk))



10 JAN HORÁČEK, MARTIN KREUZER, AND ANGE-SALOMÉ MESSENG E.

Algorithm 6 (OStab)
Input: An LTσ -independent tuple of polynomials V = (v1, . . . , vk) and an order
ideal U .
Output: A new pair (V,U)

1: Let i := 1, let V1 := V , let W0 := V , and let B0 := ∅ .
2: repeat
3: Increase i by one.
4: Compute an LTσ -independent basis extension W ′

i−1 for ⟨Vi−1⟩K ⊆ ⟨Vi−1 ∪
Bi−2 ∪W

(+)
i−2 ⟩K .

5: Let Wi−1 := ∅ and Bi−1 := W ′
i−1 .

6: repeat
7: A = {w ∈ Bi−1 | LTσ(w) ∈ U}
8: Append A to Wi−1 and remove it from Bi−1 .
9: U ′ := ⟨

∪
w∈A Supp(w)⟩OI \ U

10: U := U ∪ U ′

11: until U ′ = ∅
12: Let Vi := Vi−1 ∪Wi−1

13: until Wi−1 = ∅
14: return (Vi, U)

Now we adapt Algorithm 3 (SBBA) to this Boolean setting.

Algorithm 7 Signature Based Boolean BBA (SBBBA)
Input: Generators F = {f1, . . . , fs} of a 0-dimensional ideal I containing F and
a degree compatible term ordering σ .
Output: The squarefree subset Oσ(I)

sf of Oσ(I) and the corresponding part of the
Oσ(I)-border basis of I .

1: Let U := ⟨NFF (Supp(f1)) ∪ · · · ∪NFF (Supp(fs))⟩OI .
2: Calculate a tuple V which contains an LTσ -independent K -vector space basis

of ⟨NFF (f1), . . . ,NFF (fs)⟩K .
3: Let SV := ((1, 1), . . . , (1, k)) and S0 := ∅ .
4: repeat
5: Execute SBStab(V, SV , S0, U) and get a new tuple (V, SV , S0, U).
6: Let O := U \ ⟨LTσ(V )⟩ .
7: Let Uold := U and U := U ∪ ⟨∂Osf⟩OI .
8: until ∂Osf ⊂ Uold

9: Apply FinalReduction(V,O) and return the result.

Here the procedure SBStab(V, SV , S0, U) is defined in the following Algorithm 8.
Notice that, for a signature bound (t, j) and an indeterminate xi which divides t ,
the product xi · (t, j) = (xit, j) corresponds the same Boolean polynomial as
(t, j), since xi t f j = t f j in R . Therefore, given a tuple of signature bounds

S = ((t1, j1), . . . , (tk, jk)), we let S(+) be the concatenation of S with all signature
bounds xi · (tℓ, jℓ) such that xi does not divide tℓ .
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Algorithm 8 (SBStab)
Input: An LTσ -independent tuple V = (v1, . . . , vk) of polynomials, a tuple of
signature bounds SV = (s1, . . . , sk), another tuple of signature bounds S0 , and an
order ideal U .
Output: A new tuple (V, SV , S0, U).

1: Let i := 1, let V1 := V , let W0 := V , and let B0 := ∅ .
2: Let SV1 := SV and SW0 := SV , and let SB0 := ∅ .
3: repeat
4: Increase i by one.

5: Let V ∗ := Bi−1 ∪W
(+)
i−2 .

6: Let SWi−2 = (s′1, . . . , s
′
m), and let SV ∗ be the concatenation of SBi−1 and

(x1s
′
1, . . . , x1s

′
m, . . . , xns

′
1, . . . , xns

′
m).

7: Remove from SV ∗ all signatures xis
′
ℓ = (xit, j) for which xi divides t , and

remove from V ∗ the corresponding elements xiwℓ .
8: Let Bi−1 := ∅ , let Wi−1 := ∅ , and let SWi−1 := ∅ .
9: repeat

10: Choose a signature sℓ in SV ∗ and remove it from SV ∗ .
11: if sℓ /∈ SVi−1

∪ SWi−1
∪ S0 then

12: Reduce the ℓ -th component of V ∗ K -linearly against Vi−1∪Wi−1∪Bi−1

and get a polynomial v′ .
13: if v′ = 0 then
14: Append sℓ to S0 .
15: end if
16: if v′ ̸= 0 and LTσ(v

′) ∈ U then
17: Append v′ to Wi−1 and sℓ to SWi−1 .
18: end if
19: if v′ ̸= 0 and LTσ(v

′) /∈ U then
20: Append v′ to Bi−1 and sℓ to SBi−1

21: end if
22: end if
23: until SV ∗ = ∅
24: U := U ∪ ⟨

∪
w∈Wi−1

Supp(w)⟩OI .
25: repeat
26: A := {w ∈ Bi−1 | LTσ(w) ∈ U}
27: Append A to Wi−1 and remove it from Bi−1 .
28: Move the corresponding signature bounds from SBi−1 to SWi−1 .
29: U ′ := ⟨

∪
w∈A Supp(w)⟩OI \ U

30: U := U ∪ U ′

31: until U ′ = ∅
32: Let Vi := Vi−1 ∪Wi−1 and SVi := SVi−1 ∪ SWi−1 .

33: Let S0 := S
(+)
0 .

34: until Wi−1 = ∅
35: return (Vi, SVi , S0, U)

The proof of the correctness of Algorithm 7 (SBBBA) follows by combining the
proofs for SBBA and OBBA. Notice that we can drop a signature bound (xit, j)
with xi | t in Step 7 of SBStab since it corresponds to the same Boolen polynomial
as (t, j) which is already in SWi−2 , and hence in SVi−1 .
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5. Implementation of the Signature Based BBA

In this section we focus on the efficient implementation of the Signature Based
Boolean BBA (SBBBA). Some observations on the implementation of the Boolean
BBA (BBBA) can be found in [6]. They include efficient computations with order
ideals and suitable data structures for Boolean polynomials that are stored as a
coefficient matrix. (The polynomials correspond to rows in the matrix.) Similar
implementation techniques and data structures can be applied to the general form
of the BBA.

For the SBBBA implementation we may use a sparse representation of the ma-
trix (i.e., the rows contain only indices of nonzero entries) and a sparse representa-
tion of the terms (i.e., only the indices of variables having exponent 1 are stored).
This works well, since we are mainly working on sparse inputs, e.g., coming from
cryptographic attacks. For larger base fields, we have to store the corresponding co-
efficients in the matrix, and for normal polynomials, we have to store the exponents
of every indeterminate dividing a term.

A significant change of the design of the implementation is that we are storing
the matrix corresponding to V only in REF. The rows corresponding to non-trivial
elements of V (+) are created “on the fly”, i.e., either a new row is reduced by
already stored rows to zero and it is not appended to the matrix, or the reduction
gives us a new row in the matrix. Thus this approach is more space efficient than
the one in [6]. Pivots for reductions are carefully saved in the cache memory such
that, given a row r , we have constant-time access to the row that can reduce r .

Signature bounds are nothing more than pairs (t, i), where t is a term and i
is an integer. We associate initial signature bounds to the input polynomials and
when producing a new polynomial during the calculation of V (+) , we bind the cor-
responding signature bound to this new polynomial. The operations and orderings
on signature bounds are very simple and need no special implementation tricks. We
know that 1 ≤ i ≤ s , where the number of generators s is a rather small number.
Thus we can store a list of signature bounds S in a list of length s , where the i -th
element of the list contains all terms t for which the signature bound (t, i) is in S .

For the implementation of SBBBA, we distinguish two types of signature bounds.
First of all, there is the list of signature bounds SV corresponding to the ele-
ments of V . For any signature bound (t, i), we need a fast procedure to decide
if (t, i) ∈ SV , i.e., we need a fast find method. In C++, there exist such struc-
tures and algorithms which have constant complexity in the average case, e.g.,
std ::unordered map ::find.

The second type of signature bounds are stored in S0 . They correspond to
polynomials which have been reduced to zero. Also for this list we need to have a
fast decision procedure. Moreover, in Algorithm 4 we have to compute S+

0 and in

Algorithm 8 we need S
(+)
0 . Using the same implementation as for SV would fail

here, because S0 contains too many elements after several iterations of S+
0 . Instead,

we use the same trick as for representing an order ideal via its cogenerators.

Definition 5.1. A set of signature bounds {(t1, i), . . . , (tk, i)} ⊆ S0 is called a set
of generators of S0 w.r.t. the input polynomial fi if for every signature bound
(g, i) ∈ S0 , the polynomial g is divisible by one of the terms t1, . . . , tk . A set of
generators {(t1, i), . . . , (tk, i)} of S0 is called minimal if no term tj divides tk for
j ̸= k .
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Using this representation, computing S+
0 resp. S

(+)
0 does not fill up the memory,

and its size is kept under control. On the other hand, the find function now has
linear complexity in the length of generators. It is essential to note that the find

functions for SV and S0 are critical to the performance of the implementation of
SBBA and SBBBA, because they are called everytime before processing a new row.
Choosing inappropriate data structures and algorithms would lead to significantly
longer running times.

As mentioned previously, Step 6 of SStab (resp. Step 10 of SBStab) is very
important. It affects the course of the algorithm in many ways. So far, choosing
to work on the signature bound whose corresponding polynomial has the smallest
degree, and among those the one having the fewest terms in its support, gave us
the best results in our test runs. In fact, we influence the choice for the new pivot
rows by preferring the shorter ones. As a result, a considerable speed-up is achieved
merely by a clever selection of which polynomial in V + we work with next.

Then Step 7 of SStab (resp. Step 11 of SBStab) filters out many signature bounds
that do not have to be treated. The corresponding polynomials do not even have to
be created. Table 1 in the next section provides some profiling results about how
many times this tends to happen.

6. Experiments and Timings

In this section we perform some experiments concerning the efficiency of the
proposed improvements of the Boolean BBA. We use systems of quadratic Boolean
polynomial equations coming from algebraic attacks and algebraic fault attacks at
the Small Scale AES cryptosystem (see [5]), where we consider only its 4-bit version
with state matrices of size 1 × 1, 1 × 2, and 2 × 2. We restrict our attention to
ideals whose border basis can be computed within a time limit of 25 minutes. For
each ideal, we list the number of variables and its number of generators.

All timings were obtained on a compute server having a 3.00 GHz Intel(R)
Xeon(R) CPU E5-2623 v3 and a total of 48 GB RAM. The C++ programs imple-
menting the different versions of the BBBA were compiled using the GCC compiler
version 5.3.1 with the -02 optimization flag. Timings that exceed the timeout limit
of 25 minutes are marked by “∗”. When measuring the time consumption, we take
only the actual runtime in account. In particular, the initial memory allocation
and the setup of Boolean rings are excluded. Since we are comparing algorithms
called from other software systems to our native C++ implementation, that is usu-
ally faster in the initialization phase, this should be fair enough. The actual tests
have been performed many times to assure that there is no disturbance during the
computation which affects the running time.

Profiling of the BBA shows that the program spends more than 96% of the
time in the reduction function, i.e., in Step 8 of SStab resp. Step12 of SBStab.
Thus predicting and avoiding unnecessary reductions affects the actual runtime
considerably. In Table 1 we measure the total number of calls to the reduction
function. Here BBBA refers to the standard version described in [6]. The SBBBA is
implemented on top of the standard BBBA. The main new addition is the signature
mechanism. For the SBBBA, we provide the total number of times when we have
sℓ ∈ SV ∪ SW ′ and when we have sℓ ∈ S0 in Step 11 of SBStab (see Alg. 8).
These numbers tell us how successful the signatures are for detecting unnecessary
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reductions – instead of doing some reductions we just skip the polynomial. The
relation between skipped signatures and the runtime of the algorithm is nonlinear,
because the polynomials in the final iteration of the BBA are usually very dense,
whence their reduction takes more time than the reduction of the polynomials in the
very first iterations. Thus skipping such dense polynomials provides a significant
speed-up.

Furthermore, note that the summation of the three rightmost columns in Table 1
does not give the value in the third column, because the choice of the next signature
bound in Step 10 of SBStab guides the computation in a different way than in the
standard version of the Boolean BBA.

Boolean system Standard BBBA Signature Based BBBA
# vars # gens # red # red # in SV ∪ SW ′ # in S0

20 36 3077 1647 183 530
36 67 17243 7748 775 2241
52 99 49809 23989 3996 10235
64 111 80564 41600 11233 20767
68 131 115252 50884 9806 24715
72 119 89325 42209 5172 13675
72 135 124834 57679 14051 28782
84 163 201419 85773 17158 44382
100 195 314388 140337 34696 77360
116 227 450060 235484 78668 151900
132 259 605857 313960 91796 186899

Table 1. The number of reductions in the Standard BBBA and
the Signature Based BBBA

In Table 2 we compare our algorithm to PolyBoRi, a very good implementation
of Buchberger’s Algorithm for Boolean polynomials, and to the SAT solver Cryp-
toMiniSat 5. For the Boolean BBA, we have in fact three versions: the standard
version (see Algorithm 5), the signature based version (see Algorithm 7), and a ver-
sion of SBBBA with substitutions. The later version shares the core of the SBBBA.
However, when a polynomial of type xi , xi+1, xi+xj , or xi+xj+1 is discovered
as a result of some row reduction, we substitute the value of xi in all polynomials
known so far, thereby reducing the complexity of the problem by one variable.

By PolyBoRi we refer to the PolyBoRi implementation of Buchberger’s Algo-
rithm called from within Sage 7.5.1 (see [11]). We remark here that PolyBoRi uses
a very special implementation of Boolean polynomials (based on ZDDs) and other
special techniques for computing Boolean Gröbner bases. Hence, it is a very good
candidate for the comparison.

By SAT, we refer to CryptoMiniSat 5 (see [12]). We converted the Boolean
polynomials of the input to the DIMACS format by calling the dense ANF to CNF
conversion which is a built-in function in Sage.

The table shows that the timings of SBBBA are approaching the speed of Poly-
BoRi for smaller sized examples. The speedup provided by the signature technique
seems to be around a factor of 5. For cryptographic examples, the substitution
technique is apparently a significant further improvement. We expect that the next
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Boolean system BBBA SBBBA SBBBA+sub PolyBoRi SAT
# vars # gens in sec in sec in sec in sec in sec

20 36 0.04 0.03 0.01 0.22 0.01
36 67 0.24 0.30 0.09 0.62 0.02
52 99 4.97 1.70 0.79 0.97 0.03
64 111 27.31 16.97 12.45 1.79 0.06
68 131 27.35 6.79 1.68 1.25 0.06
72 119 73.24 12.20 4.59 1.8 0.06
72 135 129.58 10.96 2.8 2.22 0.06
84 163 87.83 18.19 6.05 1.69 0.07
100 195 282.23 54.06 11.61 2.10 0.07
104 199 ∗ 1130.67 383.50 8.22 0.07
116 227 541.12 113.73 81.05 2.45 0.09
132 259 1087.58 252.95 152.87 3.10 0.10
148 291 ∗ 473.78 263.10 3.41 0.10

Table 2. Comparison of the BBBA and the GBA timings

planned round of optimizations, including the prediction of zero reductions, i.e., the
full analogues of Buchberger’s criteria, will close the gap even more. Unsurprisingly,
SAT solving is much faster than algebraic techniques for the Boolean polynomial
setting. Thus, for actual cryptographic attacks, a hybrid method, such as the one
suggested in [6], seems to be most promising.
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