Lineare Algebra II - Übungsblatt 5

Aufgabe 1: (Matrix and Matrix reloaded) Sei $A := \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$.

- a) Die Matrix A bestimmt einen Endomorphismus $f_A: \mathbb{C}^{\overset{\searrow}{2}} \to \mathbb{C}^2, v \mapsto Av$. Bestimmen Sie die Jordansche Normalform J von f_A ; geben Sie sowohl die Transformationsmatrix T mit $J = T A T^{-1}$ als auch die Basis $\mathcal{V} = (v_1, v_2)$ an, bezüglich der f_A die darstellende Matrix J besitzt.
- b) Die Matrix A bestimmt eine Bilinearform gemäß $\Phi(e_i, e_j) := a_{ij}$. Berechnen Sie die Gramsche Matrix (Strukturmatrix) der Bilinearform bezüglich der Basis $\mathcal{V} = (v_1, v_2)$ aus Aufgabenteil a).

Aufgabe 2: (Aufgabe mit Eigenwert.) Bestimmen Sie die Jordansche Normalform von

$$A := \begin{pmatrix} 2 & a & 0 & 0 & 0 \\ 0 & 2 & b & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & c \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

in Abhängigkeit von den Parametern a, b, c. (Tipp: Überprüfen Sie Ihr Ergebnis mit Maple.)

Aufgabe 3(*): (Kann man Quadrate differenzieren?)

a) Sei $A \in Mat_n(\mathbb{R})$. Zeigen Sie, dass die komponentenweise Ableitung der Funktion $\mathbb{R} \to Mat_n(\mathbb{R}), t \mapsto \exp(tA)$ gegeben ist durch

$$\frac{d}{dt}\exp(t\,A) = A\,\exp(t\,A)\;.$$

b) Seien $A, T \in Mat_n(\mathbb{R}), T$ invertierbar. Zeigen Sie $T \exp(A) T^{-1} = \exp(T A T^{-1}).$

Aufgabe 4: (Studentisches Gesetz: Der Anspruch der Aufgaben wächst exponentiell mit der Dauer des Studiums.)

a) Berechnen Sie $\exp(A_i)$, i = 1, 2, 3, für

$$A_1 := \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
, $A_2 := \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ und $A_3 := \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

(Tipp: Blatt 3, Aufgabe 5c)

b) Berechnen Sie für A_1 aus Aufgabenteil a) und die Variable t (vgl. Aufgabe 3) die Exponentialmatrix

$$\exp(t A_1) = \begin{pmatrix} a_1(t) & b_1(t) & c_1(t) \\ a_2(t) & b_2(t) & c_2(t) \\ a_3(t) & b_3(t) & c_3(t) \end{pmatrix}$$

und zeigen Sie: Jede der Funktionen $t \mapsto (a_1(t), a_2(t), a_3(t))^T$, $t \mapsto (b_1(t), b_2(t), b_3(t))^T$ und $t \mapsto (c_1(t), c_2(t), c_3(t))^T$ ist eine Lösung des linearen Differentialgleichungssystems mit konstanten Koeffizienten

$$\begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = A_1 \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} .$$

Aufgabe 5: (Bilinearformen machen's sowohl mit der ersten als auch mit der zweiten Komponente.) Sei V ein endlich-dimensionaler K-Vektorraum mit Basis (v_1, \ldots, v_n) . Sei $\Phi: V \times V \to K$ eine (nicht notwendig symmetrische) bilineare Abbildung mit Gramscher Matrix $(a_{ij}) := (\Phi(v_i, v_j))$. Für jedes $v \in V$ sind

$$\Phi(v,-):V\to K,\quad w\mapsto \Phi(v,w)$$

und

$$\Phi(-,v):V\to K,\quad w\mapsto \Phi(w,v)$$

Linearformen. Damit erhalten wir wie in der Vorlesung die linearen Abbildungen

$$\varphi: V \to V^*, \quad v \mapsto \Phi(v, -)$$

und

$$\psi: V \to V^*, \quad v \mapsto \Phi(-, v)$$
.

- a) Sei $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$. Berechnen Sie die darstellenden Matrizen von $\Phi(v, -)$ und $\Phi(-, v)$ bezüglich der Basen (v_1, \ldots, v_n) von V und 1 von K.
- b) Berechnen Sie die darstellenden Matrizen von φ und ψ bezüglich der Basis (v_1, \ldots, v_n) und der dualen Basis (v_1^*, \ldots, v_n^*) .
- c) Zeigen Sie dim Kern $\varphi = \dim \operatorname{Kern} \psi$.

Der Abgabetermin für die folgenden Aufgaben ist der 10. Juni 2003.

Aufgabe 6(*): (ARD) Programmieren Sie den Algorithmus zur Berechnung der Hauptraumzerlegung in Maple (Korollar 17.9)

Aufgabe 7(*): (Mit dem zweiten sieht man besser) Programmieren Sie den Algorithmus zur Berechnung der Normalform eines nilpotenten Algorithmus in Maple (Korollar 17.13)

Aufgabe 8(*): (Aller guten Dinge sind drei.) Programmieren Sie den Algorithmus zur Berechnung der Jordanschen Normalform in Maple (Korollar 17.16)