Kapitel III: Algorithmische Grundlagen

6 Was sind Gröbner-Basen?

Im Folgenden sei K ein Körper und $P = K[x_1, \ldots, x_n]$.

Ziel

Effektive Berechnung von Polynomen und Polynomidealen, z.B. $f_1, \ldots, f_s, g \in P$. Gilt $g \in \langle f_1, \ldots, f_s \rangle$, d.h.

$$g = h_1 f_1 + \ldots + h_s f_s$$
 mit $h_1, \ldots, h_s \in P$

6.1 Beispiel

Seien $f_1 = x^2 - y$ und $f_2 = xy - 1$ Polynome in $P = \mathbb{Q}[x, y]$. Gilt dann $1 \in \langle f_1, f_2 \rangle$, d.h. gibt es eine Darstellung $1 = g_1 f_1 + g_2 f_2$ mit $g_1, g_2 \in P$?

6.2 Definition

Sei $\mathbb{T}^n = \{x_1^{\alpha_1} \dots x_n^{\alpha_n} \mid \alpha_i \geq 0\}$ die Menge der Terme. Eine vollständige Ordnungsrelation $<_{\sigma}$ (bzw. einfach σ) heißt eine **Termordnung** auf \mathbb{T}^n wenn

- 1. sie mit der Multiplikation verträglich ist (d.h. $t_1 \leq_{\sigma} t_2 \Rightarrow t_1 t_3 \leq_{\sigma} t_2 t_3$)
- 2. es keine unendlich echt absteigende Kette mit $t_1 >_{\sigma} t_2 >_{\sigma} \dots$ mit $t_1, t_2, \dots \in \mathbb{T}^n$ gibt.

6.3 Beispiel

a) Definiert man $<_{\text{Lex}}$ durch

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} <_{\text{Lex}} x_1^{\beta_1} \dots x_n^{\beta_n} \quad \Leftrightarrow \quad \begin{cases} \alpha_1 < \beta_1 & \text{oder} \\ \alpha_1 = \beta_1, & \alpha_2 < \beta_2 & \text{oder} \\ \vdots & \ddots & \\ \alpha_1 = \beta_1, & \dots & \alpha_{n-1} = \beta_{n-1}, & \alpha_n \le \beta_n \end{cases}$$

so erhält man die lexikographische Termordnung.

b) Definiert man <_{DegRevLex} bzw. <_{DRL} durch

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} <_{\text{DRL}} x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\begin{cases} \alpha_1 + \dots + \alpha_n > \beta_1 + \dots + \beta_n & \text{oder} \\ \alpha_1 + \dots + \alpha_n = \beta_1 + \dots + \beta_n, & \alpha_n > \beta_n & \text{oder} \\ \alpha_1 + \dots + \alpha_n = \beta_1 + \dots + \beta_n, & \alpha_n = \beta_b & \alpha_{n-1} > \beta_{n-1} & \text{oder} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 + \dots + \alpha_n = \beta_1 + \dots + \beta_n, & \alpha_n = \beta_b & \dots & \alpha_3 = \beta_3, & \alpha_2 \ge \beta_2 \end{cases}$$

so erhält man die graduiert-umgekehrt-lexikographische Term.

6.4 Satz (Dicksons Lemma)

Sei $(t_1, t_2, ...)$ eine Folge von Termen in \mathbb{T}^n und sei $I = \langle t_1, t_2, ... \rangle \subseteq P$ das von ihm erzeugte **monomiale** Ideal. Dann gibt es ein N > 0 mit $I = \langle t_1, ..., t_N \rangle$.

MaW: Jedes t_i mit i > N ist Vielfaches eines der Terme in $\{t_1, \ldots, t_N\}$.

b) Eine mit der Multiplikation verträgliche, vollständige Ordnungsrelation $<_{\sigma}$ ist genau dann eine Termordnung, wenn für alle $t \in \mathbb{T}^n$ gilt: $t \ge_{\sigma} 1$.

Beweis:

 $\mathbf{Z}\mathbf{u}$ (a): Wir schließen mit vollständiger Induktion nach n.

n=1: Jedes monomiale Ideal $I\subseteq K[x]$ ist von der Form $I=(x^a)$ mit $a\geq 0$.

n>1: Angenommen $\langle t_1,t_2,\ldots\rangle$ ist nicht von endlich vielen t_i erzeugt. OE gelte $t_i\notin\langle t_1,\ldots,t_{i-1}\rangle$ für alle $i\geq 2$. Für $t=x_1^{\alpha_1}\ldots x_n^{\alpha_n}$ setze $t'=x_2^{\alpha_2}\ldots x_n^{\alpha_n}$ (d.h. x_1 -Potenz weglassen). Wähle in (t_1,t_2,\ldots) eine Teilfolge (u_1,u_2,\ldots) mit $u_i=t_{\nu(i)}$, so dass u_i in $t_{\nu(i-1)+1},t_{\nu(i-1)+2},\ldots$ der Term mit minimalem x_1 -Exponent ist. Nach Induktionsvoraussetzung gibt es für $J=\langle u'_1,u'_2,\ldots\rangle\subseteq K\left[x_2,\ldots,x_n\right]$ ein N'>0 mit

$$J = \langle u_1', \dots, u_{N'}' \rangle$$

Dann sind die x_1 -Exponenten der Folge $(u_1, u_2, ...)$ monoton zunehmend. Dann sind alle Elemente u_k mit k > N' Vielfache eines der Terme in $\{u_1, ..., u_{N'}\}$. Wir erhalten einen Widerspruch zu

$$u_{N'+1} = t_{\nu(N'+1)} \notin \langle t_1, \dots, t_{\nu(N'+1)-1} \rangle.$$

Zu (b): " \Rightarrow ": Angenommen $t <_{\sigma} 1$, so wäre $1 >_{\sigma} t >_{\sigma} t^2 >_{\sigma} t^3 >_{\sigma} \dots$ eine unendliche echt absteigende Folge.

"\(\infty\)". Sei $t_1 >_{\sigma} t_2 >_{\sigma} t_3 >_{\sigma} \dots$ eine unendliche Kette. Dann folgt $t_i \notin \langle t_1, \dots, t_{i-1} \rangle$, denn $t_i = t't_j$ mit j < i und es folgt $t_i \geq_{\sigma} t_j$. Damit erhalten wir einen Widerspruch zu (a).

6.5 Definition

Sei σ eine Termordnung auf \mathbb{T}^n .

- a) Für ein $f \in P \setminus \{0\}$ schreibe $f = c_1 t_1 + \ldots + c_s t_s$ mit $c_i \in K \setminus \{0\}$ und $t_i \in \mathbb{T}^n$. Dann heißt $LT_{\sigma}(f) = t_1$ der **Leitterm** von f bzgl σ . Wir setzen auch $LM_{\sigma}(f) = c_1 t_1$.
- b) Für ein Polynomideal $I \subseteq P$ sei

$$LT_{\sigma}\left(I\right) = \underbrace{\left\langle LT_{\sigma}\left(f\right) \mid f \in I \setminus \{0\}\right\rangle}_{\text{monomiales Ideal}}$$

das Leittermideal von I. Wir setzen $LT_{\sigma}((0)) = (0)$.

6.6 Beispiel

a) Sei $\sigma = \text{Lex und } I = \langle x^2 - y, xy - 1 \rangle \subseteq P = \mathbb{Q}[x, y]$. $\text{LT}_{\sigma}(x^2 - y) = x^2 \text{ und } \text{LT}_{\sigma}(xy - 1) = xy$. Also folgt $\langle x^2, xy \rangle \subseteq \text{LT}_{\sigma}(I)$. Gleichheit gilt nicht, denn

$$x - y^2 = y(x^2 - y) - x(xy - 1) \in I$$

 $y^3 - 1 = -y(x - y^2) + (xy - 1) \in I$

wobei $LT_{\sigma}(x-y^2)=x$ und $LT(y^3-1)=y^3$. Daher wissen wir $LT_{\sigma}(I)\supseteq\langle x^2,xy,x,y^3\rangle=\langle x,y^3\rangle$

- b) Sei $\sigma = \text{Lex und } I = \langle x^2 y, y^2 1 \rangle$. Dann gilt $\text{LT}_{\sigma}(I) = \langle x^2, y^2 \rangle$.
- b) Für $\sigma = \text{Lex und } I = \langle x^2 y, xy 1 \rangle$ gilt $\text{LT}_{\sigma}(I) \subseteq \langle x, y^3 \rangle$, denn

$$x - y^2 = y(x^2 - y) - x(xy - 1) \in I$$

 $y^3 - 1 = -y(x - y^2) + (xy - 1) \in I$

6.7 Definition

Sei $I = \langle f_1, \dots, f_s \rangle \subseteq P$ ein von Polynomen $f_i \neq 0$ erzeugtes Polynomideal und σ eine Termordnung. Die Menge $G = \{f_1, \dots, f_s\}$ heißt eine σ -Gröbner-Basis (σ -GB) von I wenn LT (I) = \langle LT $_{\sigma}(f_1), \dots,$ LT $_{\sigma}(f_s)\rangle$ gilt.

6.8 Beispiel

In Beispiel 6.6.a gilt $I = \langle g_1, g_2 \rangle$ mit $g_1 = x - y^2$ und $g_2 = y^3 - 1$, denn $f_1, f_2 \in \langle g_1, g_2 \rangle$. Die Menge $G = \{g_1, g_2\}$ ist sogar eine σ -Gröbner-Basis von I, d.h. es gilt sogar $LT_{\sigma}(I) = \langle x, y^3 \rangle$.

6.9 Satz (Existenz von Gröbnerbasen)

Sei σ eine Termordnung und $I \subseteq P$ ein Ideal. Dann gibt es eine endliche σ -Gröbner-Basis $G = \{g_1, \ldots, g_s\}$ von I. Ferner gilt: $I = \langle g_1, \ldots, g_s \rangle$. Insbesondere ist I endlich erzeugt (Hilbertscher Basissatz).

Beweis: Nach Satz 6.4.a (Dicksons Lemma) ist das monomiale Ideal $LT_{\sigma}(I) = \langle LT_{\sigma}(f) \mid f \in I \setminus \{0\} \rangle$ von endlich vielen $LT_{\sigma}(f_1), \ldots, LT_{\sigma}(f_2)$ erzeugt. Damit ist $G = \{f_1, \ldots, f_s\}$ eine σ -Gröbnerbasis von I. Nun zeigen wir $I = \langle f_1, \ldots, f_s \rangle$. Angenommen es gibt ein $f \in I \setminus \langle f_1, \ldots, f_s \rangle$. Dann gibt es dann ein solche f mit minimalem Leitterm. Schreibe $LM_{\sigma}(f) = c LM_{\sigma}(f_i) t$ mit $c \in K$, $i \in \{1, \ldots, s\}$ und $t \in \mathbb{T}^n$. Dann besitzt $f - ctf_i \in I \setminus \langle f_1, \ldots, f_s \rangle$ einen kleineren Leitterm als f. Wir erhalten einen Widerspruch. \square Mit Hilfe von Gröbnerbasen kann man das **Idealzugehörigkeitsproblem** effektiv lösen.

6.10 Satz

Sei σ eine Termordnung, $I \subseteq P$ ein Ideal und sei $G = \{g_1, \dots, g_s\}$ eine σ -Gröbnerbasis von I.

- a) An jedem Polynom $f \in P \setminus \{0\}$ kann man nur endlich viele Reduktionsschritte mittels \xrightarrow{G} durchführen. Ein Reduktionsschritt mittels \xrightarrow{G} ist dabei eine Subtraktion $f \xrightarrow{G} f ctg_i$ mit $c \in K$, $t \in \mathbb{T}^n$ und $g_i \in G$, so dass der Term $t \operatorname{LT}(g_i)$ in der Differenz nicht mehr vorkommt.
- b) Führt man an einem Polynom $f \in P \setminus \{0\}$ so viele Reduktionsschritte mittels \xrightarrow{G} wie möglich durch, so ist das Ergebnis eindeutig bestimmt. Es heißt die Normalform von f bzgl. I und wird mit $NF_{\sigma,I}(f)$ bezeichnet.
- c) Der Träger von NF $_{\sigma,I}$ ist in $\mathcal{O}_{\sigma}\left(I\right)=\mathbb{T}^{n}\backslash\operatorname{LT}_{\sigma}\left(I\right)$ enthalten.
- d) Für $f \in P$ gilt $f \in I$ genau dann, wenn $NF_{\sigma,I}(f) = 0$.

Sammelt man dabei die in $f \xrightarrow{G} 0$ verwendeten Subtrahenden, so erhält man eine Darstellung

$$f = \sum_{i=1}^{s} h_i g_i$$
 mit $h_i \in P$ und $LT_{\sigma}(h_i g_i) \le LT_{\sigma}(f)$

[Explizite Idealzugehörigkeit]

Beweis:

Zu (a): Angenommen $f = f_0 \xrightarrow{G} f_1 \xrightarrow{G} \dots$ ist eine unendliche Kette echter Reduktionsschritte. In jedem f_i gibt es dann einen bzgl. σ maximalen Term t_i mit der Eigenschaft dass er später reduziert wird. Dann ist $t_1 \geq_{\sigma} t_2 \geq_{\sigma} \dots$ eine nicht stationäre unendliche Kette. Dies ist ein Widerspruch zu σ Termordnung.

Zu (b), (c): Seien $f \xrightarrow{G} f'$ und $f \xrightarrow{G} f''$ Ketten, so dass f', f'' nicht weiter reduzierbar bzgl. \xrightarrow{G} sind. Dann ist kein Term von f' oder f'' in $LT_{\sigma}(I)$ enthalten. Also sind alle Terme von f' - f'' in $\mathcal{O}_{\sigma}(I)$ enthalten. Andererseits gilt:

$$f' - f'' = (f - f'') - (f - f') \in I$$

und daher folgt

$$LT_{\sigma}(f - f') \in LT_{\sigma}(I)$$
 (kann nicht sein) oder $f' - f'' = 0$

Damit f' = f''.

Zu (d): " \Leftarrow " folgt aus $f \xrightarrow{G} NF_{\sigma,I}(f) = 0$ durch Sammeln der Subtrahenden. " \Rightarrow " Es gibt eine Kette

$$f = \sum_{i=1}^{s} h_i g_i \xrightarrow{G} 0$$

Wegen (b) ist dann $NF_{\sigma,I}(f) = 0$. Der zweite Teil von (d) ist klar.

6.11 Bemerkung

a) Zu $f_1, \ldots, f_s \in P$ heißt

$$\operatorname{Syz}_{P}(f_{1},\ldots,f_{s})=\{(h_{1},\ldots,h_{s})\in P^{s}\mid h_{1}f_{2}+\ldots+h_{s}f_{s}=0\}$$

der **Syzygienmodul** von (f_1, \ldots, f_s) . Es ist ein P-Untermodul von P^s . Man kann mit einer σ -Gröbnerbasis $I = \langle f_1, \ldots, f_s \rangle$ ein Erzeugendensystem dieses Syzygienmoduls berechnen.

- b) Sind $g, f_1, \ldots, f_s \in P$ beliebige Polynome, so kann man auch Reduktionsschritte $g \xrightarrow{F} g ctf_i$ definieren. Wenn man jetzt soviele Reduktionsschritte wie möglich macht, so ist das Ergebnis i.A. nicht eindeutig bestimmt. Verwendet man die Vorschriften:
 - 1. es wird stets der größte reduzierbare Term in g wegreduziert
 - 2. es wird stets das f_i mit kleinstmöglichen i verwendet

Dann heißt das Ergebnis der **normale Rest** der Division von $F = (f_1, \ldots, f_s)$ und wird mit $NR_{\sigma,F}(g)$ bezeichnet.

6.12 Theorem (Buchbergers Algorithmus)

Sei $F = (f_1, \ldots, f_s)$ ein Tupel von Polynomen $\neq 0$, das ein Ideal $I = \langle f_1, \ldots, f_s \rangle \subseteq P$ erzeugt und sei σ eine Termordnung. Für $i = 1, \ldots, s$ schreibe $\mathrm{LM}_{\sigma}(f_i) = c_i t_i$ mit $c_i \in K$ und $t_i \in \mathbb{T}^n$. Betrachte die folgenden Instruktionen:

- 1. Setze s' = s, G = F und $B = \{(i, j) \mid 1 \le i < j \le s\}$.
- 2. Ist $B = \emptyset$, so gib G aus und stoppe.
- 3. Wähle ein Paar $(i, j) \in B$ und streiche es aus B.

4. Berechne das S-Polynom

$$S_{ij} = \frac{1}{c_i} \frac{\text{kgV}(t_i, t_j)}{t_i} f_i - \frac{1}{c_j} \frac{\text{kgV}(t_i, t_j)}{t_j} f_j$$

wobei $\mathrm{LM}_{\sigma}\left(f_{k}\right)=c_{k}t_{k}$ mit $c_{k}\in K,\,t_{k}\in\mathbb{T}^{n}$ gelte. Dann berechne

$$S'_{ij} = \operatorname{NR}_{\sigma,\mathcal{G}}(S_{ij})$$

Gilt $S'_{ij} = 0$, so fahre mit (2) fort.

5. Erhöhe s' um eins, setze $f_{s'} = S'_{ij}$ und füge $\{(i, s') \mid 1 \le i \le s'\}$ zu B hinzu. Dann fahre mit (2) fort.

Dies ist ein Algorithmus, der eine σ -Gröbnerbasis $G = (f_1, \dots, f_s)$ von I berechnet.

Beweisskizze (Vgl. [KR1], §2.5):

Endlichkeit: Schritt (5) wird nur endlich oft durchlaufen, und zwar nur wenn ein Polynom S'_{ij} gefunden wird mit

$$LT_{\sigma}\left(S'_{ij}\right) \in LT_{\sigma}\left(I\right) \setminus \left\langle LT_{\sigma}\left(f_{1}\right), \dots, LT_{\sigma}\left(f_{s'}\right)\right\rangle$$

Die aufsteigende Kette $\langle LT_{\sigma}(f_1) \rangle \subseteq \langle LT_{\sigma}(f_1), LT_{\sigma}(f_2) \rangle \subseteq ...$ wird stationär (Dicksons Lemma). Also wird wird B nur endlich oft vergrößert. Da in (3) stets ein Paar aus B gestrichen wird, ist B irgendwann leer.

Korrektheit: Verwendet das Buchberger-Kriterium: Genau dann ist $G = (f_1, \ldots, f_{s'})$ ein σ -Gröbnerbasis von I, wenn für $1 \le i < j \le s'$ gilt:

$$NR_{\sigma,G}(S_{ij}) = 0$$