

Schöne Zahlen

Lehrerfortbildung – 18.12.2019

Schönheit in der Mathematik

Aufgabe 1

Geben Sie einen rein zahlentheoretischen Beweis für die Klassifikation der primitiven Pythagoreischen Tripel an.

Hinweis: Sei $a^2 + b^2 = c^2$ mit $a, b, c \in \mathbb{N}$ und ggT(a, b, c) = 1. Schreiben Sie

$$b^2 = c^2 - a^2 = (c - a)(c + a)$$

mit a gerade (es ist notwendig a oder b gerade!). Zeigen Sie zunächst ggT(c-a,c+a)=1 und damit $c+a=x^2,c-a=y^2$ für $x,y\in\mathbb{N}$. Folgern Sie daraus $a=\frac{x^2-y^2}{2},b=xy$ und $c=\frac{x^2+y^2}{2}$.

Beweis. Sei $a^2+b^2=c^2$ mit $a,b,c\in\mathbb{N}$ und $\operatorname{ggT}(a,b,c)=1$. Zunächst ist a oder b gerade. Denn: Sind a und b beide ungerade, so ist $a^2+b^2\equiv 2\pmod 4$ (Beachte: Ist a=2k+1, so ist $a^2=4k^2+4k+1\equiv 1\pmod 4$). Das ergibt einen Widerspruch, denn $c^2\equiv 0\pmod 4$ oder $c^2\equiv 1\pmod 4$. Es können auch nicht beide a und b gerade sein, da dann auch c gerade sein muss. Dies steht im Widerspruch zu $\operatorname{ggT}(a,b,c)=1$. Also ist eine von a oder b gerade und die andere ungerade.

Sei ohne Einschränkung a gerade. Wir schreiben $b^2 = c^2 - a^2 = (c - a)(c + a)$. Es ist ggT(c - a, c + a) = 1. Denn: Zunächst ist c + a ungerade da a gerade ist und ggT(a, b, c) = 1 (wäre c + a gerade, so wäre c gerade, also auch b wegen $a^2 + b^2 = c^2$). Da c + a ungerade ist, folgt:

$$ggT(c - a, c + a) = ggT(c - a, c + a - (c - a)) = ggT(c - a, 2a)$$

= $ggT(c - a, a) = ggT(c, a)$

Wegen $a^2+b^2=c^2$ und $\operatorname{ggT}(a,b,c)=1$ ist $\operatorname{ggT}(a,c)=1$, also $\operatorname{ggT}(c-a,c+a)=1$. Das Produkt der teilerfremden Zahlen c-a und c+a ist b^2 , also ein Quadrat. Wegen der Eindeutigkeit der Primfaktorzerlegung (bis auf die Reihenfolge) müssen damit c-a und c+a selbst Quadrate sein. Es gibt also $x,y\in\mathbb{N}$ mit $c+a=x^2$ und $c-a=y^2$. Es folgt $2c=(c+a)+(c-a)=x^2+y^2$, also $c=\frac{x^2+y^2}{2}$. Analog folgt $a=\frac{x^2-y^2}{2}$. Wegen $(c+a)(c-a)=b^2=x^2y^2=(xy)^2$ ist dann b=xy. In der Tat gilt:

$$\left(\frac{x^2 - y^2}{2}\right)^2 + (xy)^2 = \left(\frac{x^2 + y^2}{2}\right)^2$$

Bemerkung: Für (x, y) = (3, 1) erhalten wir (a, b, c) = (4, 3, 5); für (x, y) = (5, 1) erhalten wir (a, b, c) = (12, 5, 13).

Aufgabe 2

a) Eine Zahl der Form $M_n = 2^n - 1$ mit $n \in \mathbb{N}, n \geq 2$, heißt Mersenne Zahl. Ist M_n eine Primzahl, so nennen wir M_n eine Mersennesche Primzahl.

Zeigen Sie: Ist M_n eine Primzahl, so ist n selbst eine Primzahl.

Beweis. Sei $M_n = 2^n - 1, n \ge 2$ eine Primzahl. Angenommen n = ab mit $2 \le a, b < n$. Dann ist

$$M_n = 2^n - 1 = (2^a)^b - 1 = (2^a - 1)(1 + 2^a + \dots + (2^a)^{b-1}).$$

Beide Faktoren auf der rechten Seite sind größer als 1. Dies ist ein Widerspruch, da M_n eine Primzahl ist. Also kann n nicht zusammengesetzt sein, d.h. n muss eine Primzahl sein.

Bemerkung: M_p ist Primzahl für p=2,3,5,7,13,17,19,31,67,127 und 257. Für alle anderen Primzahlen p mit $p\leq 257$ ist M_p keine Primzahl. Es ist etwa $M_{11}=2^{11}-1=23\cdot 89$. Zur Zeit sind 51 Mersennesche Primzahlen bekannt. Die größte ist $2^{82589933}-1$.

Bemerkung: Für Mersennesche Primzahlen gibt es den Lucas-Lehmer Test: Sei $p \geq 3$ eine Primzahl. Definiere rekursiv die Folge $(S_n)_{n \in \mathbb{N}}$ durch $S_1 = 4$ und $S_n = S_{n-1}^2 - 2$ für $n \geq 2$. Damit ist $M_p = 2^p - 1$ eine Primzahl genau dann wenn $M_p \mid S_{p-1}$.

Dieser Test ist die Grundlage für das Suchprojekt GIMPS nach großen Primzahlen.

b) Sei $n \in \mathbb{N}$ und $\sigma(n) = \sum_{\substack{d \mid n \\ d > 1}} d$ die Summe aller positiven Teiler von n.

Zeigen Sie: Für $n, m \in \mathbb{N}$ gilt $\sigma(n) \cdot \sigma(m) = \sigma(nm)$ falls ggT(n, m) = 1.

Beweis. Seien $m, n \in \mathbb{N}$ mit ggT(n, m) = 1, $\sigma(n) = \sum_{\substack{d \mid n \\ d \geq 1}} d$ und $\sigma(m) = \sum_{\substack{d' \mid m \\ d' > 1}} d'$.

Es ist

$$\sigma(n)\sigma(m) = \left(\sum_{\substack{d|n\\d \ge 1}} d\right) \left(\sum_{\substack{d'|m\\d' \ge 1}} d'\right) = \sum_{\substack{d|n\\d \ge 1}} \sum_{\substack{d'|m\\d \ge 1}} dd' = \sum_{\substack{dd'|nm\\d \ge 1, \ d' \ge 1}} dd' = \sigma(nm)$$

da wegen ggT(n, m) jeder Teiler von nm von der Form dd' mit $d \mid n, d' \mid m$ und ggT(d, d') = 1 ist.

c) Eine Zahl $n \in \mathbb{N}$ heißt vollkommene Zahl falls $\sigma(n) = 2n$. Beispiele: n = 6, 28, 496, 8128. Charakterisierung: Sei $n=2^{s-1}b$ mit $s,b\in\mathbb{N},s\geq 2$ und b ungerade. Dann sind äquivalent:

- (1) b ist eine Mersennesche Primzahl und $b = 2^s 1$.
- (2) n ist vollkommen.

Zeigen Sie: $(1) \Rightarrow (2)$.

Bemerkung: Der Beweis der Richtung $(2) \Rightarrow (1)$ ist etwas aufwendiger. Einen Beweis dafür findet man in dem Buch "Number Theory" von B. Fine und G. Rosenberger (Birkhäuser-Springer, 2016). Dort wird auch der Lucas-Lehmer Test explizit behandelt.

Beweis. Wir zeigen (1) \Rightarrow (2). Sei $b = 2^s - 1$ eine Primzahl. Wegen $b \neq 2$ ist $n = 2^{s-1}b$ die Primfaktorzerlegung von n. Daher ist

$$\sigma(n) = \sigma(2^{s-1})\sigma(b)$$

$$= (1+2+\dots+2^{s-1})(b+1)$$

$$= (2^{s}-1)\cdot 2^{s} = 2\cdot 2^{s-1}(2^{s}-1)$$

$$= 2n.$$

Bemerkungen:

1) Wir zeigen nun die Implikation (2) \Rightarrow (1) von Euler (1707-1783).

Sei $n=2^{s-1}b$ mit $s\geq 2$, b ungerade, eine (gerade) vollkommene Zahl. Die positiven Teiler von n sind von der Form 2^tm mit $0\leq t< s$ und $m\mid b$. Es folgt

$$\sigma(n) = (1 + 2 + \dots + 2^{s-1}) \, \sigma(b) = (2^s - 1) \, \sigma(b).$$

Da n vollkommen ist, folgt $\sigma(n) = 2n$, also erhalten wir $2^sb = (2^s - 1)\sigma(b)$. Damit muss $\sigma(b)$ gerade sein, denn b und $2^s - 1$ sind ungerade. Wir erhalten $b = (2^s - 1)a$ und $\sigma(b) = 2^sa, a \in \mathbb{N}$, nach Euklids Lemma:

Sind $x, y, z \in \mathbb{Z} \setminus \{0\}$, $x \mid yz$ und $\operatorname{ggT}(x, y) = 1$, so gilt $x \mid z$. (Der Euklidische Algorithmus liefert eine Darstellung ux + vy = 1 mit $u, v \in \mathbb{Z}$; also ist uxz + vyz = z. Aus $x \mid yz$ und $x \mid x$ folgt $x \mid z$).

Die Zahl b hat die Teiler a und $(2^s-1)a > a$. Ihre Summe ist $2^s a = \sigma(b)$. Dies ist nur möglich, wenn $b = (2^s-1)a$ keine anderen positiven Teiler hat. Dies bedeutet a = 1 und $2^s - 1$ ist eine Primzahl, und nach a) muss s eine Primzahl sein. Also ist $b = 2^s - 1$ eine Mersennesche Primzahl.

2) Es bleiben die Fragen: Gibt es unendlich viele gerade vollkommene Zahlen und damit unendlich viele Mersennesche Primzahlen? Gibt es ungerade vollkommene Zahlen?

d) Die m-te Dreieckszahl $T_m, m \in \mathbb{N}$, ist definiert durch

$$T_m = \sum_{k=1}^m k = \frac{m(m+1)}{2}.$$

Zeigen Sie: Ist n eine gerade vollkommene Zahl, so ist n eine Dreieckszahl.

Bemerkung: Es ist nicht bekannt, ob es ungerade vollkommene Zahlen gibt.

Beweis. Sei n eine gerade vollkommene Zahl. Wegen c) können wir $n=2^{p-1}(2^p-1)$ für $p\in\mathbb{N}$ und $p\geq 2$ schreiben. Setze $m=2^p-1$. Dann ist

$$T_m = \frac{m(m+1)}{2} = \frac{(2^p - 1) \cdot 2^p}{2} = n.$$

Aufgabe 3

Wir setzen $f_0 = 0$, $f_1 = 1$ und $f_2 = 1$, und für $n \ge 3$ sei f_n die Anzahl aller 0 - 1 Folgen der Länge n - 2, bei denen keine zwei Einsen nebeneinander stehen. Zeigen Sie:

a) $f_n = f_{n-1} + f_{n-2}$ für $n \ge 3$.

Beweis. Wir haben $f_0=0, f_1=f_2=1$. Sei nun $n\geq 3$. Sei M_n die Menge aller 0-1 Folgen der Länge n-2, bei denen keine zwei Einsen nebeneinander stehen

Damit ist $|M_3|=f_3=2$, da wir genau die Folgen 0 und 1 haben. Ferner ist $|M_4|=f_4=3$, da wir genau die Folgen 00, 01 und 10 haben. Sei nun $n\geq 5$ und die Behauptung sei richtig für alle k mit $3\leq k< n$. Es ist $M_n=M_n^{(0)} \dot{\cup} M_n^{(1)}$ eine disjunkte Vereinigung von $M_n^{(0)}$, die Menge aller Folgen in M_n , die mit einer 0 enden, und $M_n^{(1)}$, die Menge aller Folgen in M_n , die mit einer 1 enden. Jede Folge in $M_n^{(1)}$ muss nach der Definition mit 01 enden. Daher ist

$$f_n = |M_n| = |M_n^{(0)}| + |M_n^{(1)}| = |M_{n-1}| + |M_{n-2}| = f_{n-1} + f_{n-2}.$$

Also gilt allgemein $f_n = f_{n-1} + f_{n-2}$ für $n \ge 3$ nach dem zweiten Induktionsprinzip (dies ist äquivalent zum ersten Induktionsprinzip "vollständige Induktion").

b) $f_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ für $n \ge 1$, wobei $\alpha = \frac{1 + \sqrt{5}}{2}$ die Goldene-Schnitt-Zahl ist und $\beta = -\alpha^{-1} = \frac{1 - \sqrt{5}}{2}$.

Hinweis: α und β sind die Lösungen der Gleichung $x^2 = x + 1$, also gilt für $n \ge 1$:

$$\alpha^{n+2} = \alpha^{n+1} + \alpha^n$$
 und $\beta^{n+2} = \beta^{n+1} + \beta^n$

Beweis. Die Zahlen α und β sind die beiden Lösungen der Gleichung $x^2-x-1=0$, d.h. es ist $\alpha^2=\alpha+1$ und $\beta^2=\beta+1$. Das ergibt $\alpha^{n+2}=\alpha^{n+1}+\alpha^n$ und $\beta^{n+2}=\beta^{n+1}+\beta^n$ nach Multiplikation mit α^n bzw. β^n . Es ist $\alpha-\beta=\sqrt{5}\neq 0$. Für n=1 ist $1=\frac{\alpha-\beta}{\alpha-\beta}=f_1$ und für n=2 ist $1=\frac{\alpha^2-\beta^2}{\alpha-\beta}=\alpha+\beta=f_2$. Nach dem zweiten Induktionsprinzip folgt allgemein für $n\geq 1$:

$$f_{n+2} = f_{n+1} + f_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} + \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
$$= \frac{\alpha^{n+1} + \alpha^n - (\beta^{n+1} + \beta^n)}{\alpha - \beta} = \frac{\alpha^{n+2} - \beta^{n+2}}{\alpha - \beta} \qquad \Box$$

Bemerkung: Die Zahlen $f_n, n \geq 0$, heißen die Fibonacci-Zahlen. Diese haben viele Eigenschaften, etwa:

- (1) $f_1 + f_2 + \ldots + f_n = f_{n+2} 1$ für $n \ge 1$.
- (2) $f_1^2 + \ldots + f_n^2 = f_n f_{n+1}$ für $n \ge 1$.
- (3) $f_{n+m} = f_{n-1}f_m + f_n f_{m+1}$ für $n, m \ge 1$.
- (4) $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$, und damit insbesondere $f_{n+1}f_{n-1} f_n^2 = (-1)^n$
- (5) $ggT(f_n, f_m) = f_{ggT(n,m)} \text{ für } n, m \ge 1.$

Beweise hierfür findet man in dem Buch "Number Theory" von B. Fine und G. Rosenberger (Birkhäuser-Springer, 2016).

c) Zeigen Sie die Eigenschaften (2) und (4).

Beweis. Zu (2): Es ist $f_1^2=1=f_1f_2.$ Sei nun $n\geq 2$ und die Behauptung richtig für n-1. Dann folgt

$$f_1^2 + \dots + f_n^2 = (f_1^2 + \dots + f_{n-1}^2) + f_n^2 = f_{n-1}f_n + f_n^2 = f_n(f_n + f_{n-1}) = f_n f_{n+1}.$$

Zu (4): Es ist $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^1 = \begin{pmatrix} f_2 & f_1 \\ f_1 & f_0 \end{pmatrix}$. Sei nun $n \geq 2$ und die Behauptung richtig für n-1. Dann folgt

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} f_{n} & f_{n-1} \\ f_{n-1} & f_{n-2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} f_{n} + f_{n-1} & f_{n} \\ f_{n-1} + f_{n-2} & f_{n-1} \end{pmatrix} = \begin{pmatrix} f_{n+1} & f_{n} \\ f_{n} & f_{n-1} \end{pmatrix}.$$

Sei $A=\begin{pmatrix} 1&1\\1&0 \end{pmatrix}$. Dann gilt det A=-1 für die Determinante von A. Nach der Multiplikationsregel für Determinanten folgt det $A^n=(\det A)^n=(-1)^n$ für $n\geq 1$. Wegen $A^n=\begin{pmatrix} f_{n+1}&f_n\\f_n&f_{n-1} \end{pmatrix}$ gilt det $A^n=f_{n+1}f_{n-1}-f_n^2$ für $n\geq 1$. Das ergibt die Behauptung: $f_{n+1}f_{n-1}-f_n^2=\det(A^n)=(\det A)^n=(-1)^n$.

Bemerkung: Die Eigenschaften (1) und (3) folgen ähnlich durch Induktion (bei (3) nehme man ein beliebiges, aber festes m). Die Eigenschaft (5) ist hingegen nicht so einfach zu zeigen.