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Abstract

Algebraic solving of polynomial systems and satisfiability of propositional logic for-
mulas are not two completely separate research areas, as it may appear at first sight. In
fact, many problems coming from cryptanalysis, such as algebraic fault attacks, can be
rephrased as solving a set of Boolean polynomials or as deciding the satisfiability of a
propositional logic formula. Thus one can analyze the security of cryptosystems by ap-
plying standard solving methods from computer algebra and SAT solving. This doctoral
thesis is dedicated to studying solvers that are based on logic and algebra separately as
well as integrating them into one such that the combined solvers become more powerful
tools for cryptanalysis.

This disseration is divided into three parts. In this first part, we recall some theory
and basic techniques for algebraic and logic solving. We focus mainly on DPLL-based
SAT solving and techniques that are related to border bases and Gröbner bases. In
particular, we describe in detail the Border Basis Algorithm and discuss its specialized
version for Boolean polynomials called the Boolean Border Basis Algorithm.

In the second part of the thesis, we deal with connecting solvers based on algebra
and logic. The ultimate goal is to combine the strength of different solvers into one.
Namely, we fuse the XOR reasoning from algebraic solvers with the light, efficient design
of SAT solvers. As a first step in this direction, we design various conversions from sets
of clauses to sets of Boolean polynomials, and vice versa, such that solutions and models
are preserved via the conversions. In particular, based on a block-building mechanism,
we design a new blockwise algorithm for the CNF to ANF conversion which is geared
towards producing fewer and lower degree polynomials. The above conversions allow us
to integrate both solvers via a communication interface.

To reach an even tighter integration, we consider proof systems that combine resolu-
tion and polynomial calculus, i.e. the two most used proof systems in logic and algebraic
solving. Based on such a proof system, which we call SRES, we introduce new types
of solving algorithms that demostrate the synergy between Gröbner-like and DPLL-like
solving. At the end of the second part of the dissertation, we provide some experiments
based on a new benchmark which illustrate that the our new method based on DPLL
has the potential to outperform CDCL SAT solvers.

In the third part of the thesis, we focus on practical attacks on various cryptograhic
primitives. For instance, we apply SAT solvers in the case of algebraic fault attacks on
the symmetric ciphers LED and derivatives of the block cipher AES. The main goal there
is to derive so-called fault equations automatically from the hardware description of the
cryptosystem and thus automatizate the attack. To give some extra power to a SAT
solver that inverts the hash functions SHA-1 and SHA-2, we describe how to tweak the
SAT solver using a programmatic interface such that the propagation of the solver and
thus the attack itself is improved.

Keywords: Boolean polynomial, border basis, SAT solving, combined proof system,
algebraic normal form, conjunctive normal form, algebraic fault attack
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Chapter 1

Introduction

1.1 Motivation

The theory and techniques described in this doctoral thesis are motivated by solving
hard problems coming from cryptology. Cryptography is a research field whose main
goals are to study and design cryptographic primitives (i.e. low-level, basic cryptographic
algorithms) such as block ciphers, stream ciphers, one-way functions, hash functions,
etc., as well as to integrate several cryptographic primitives into cryptographic protocols
such as key agreement methods, digital cash, secure multiparty computation, e-voting,
etc. Cryptanalysis is a research area whose main objectives are to analyze and conduct
attacks on cryptographic algorithms. Typically, an attacker wants to recover the secret
key or an inner state of the cryptosystem. Both fields can be seen as one discipline,
cryptology, because cryptographers must have a good overview of attacks when designing
new protocols, and cryptanalysts set new standards for cryptography by new attack
techniques. For background for cryptology, we refer to the book [108].

Cryptographic algorithms have frequently special features. For instance, many block
ciphers are XOR-rich (i.e. their hardware implementations contain a lot of XOR gates),
they typically adhere to an iterative design using only a few basic transformations,
and they are carefully taylored to be effective in hardware, software, or both. The XOR

constraints are usually used for combining secret information with the internal state of a
cryptosystem. A careful analysis of this operation goes back to the work of Shannon, and
it can be shown that this operation may provide so-called perfect secrecy (see [108, Sect.
2.3]), i.e. it has desired cryptographic properties.

From the theoretic point of view, cryptographic transformations are nothing more than
Boolean maps (i.e. maps Fn2 → Fm2 where F2 is the field of two elements and n,m ∈ N)
that transform input bits to output bits, and thus they can be expressed by Boolean
polynomials or by propositional formulae. Using the above representations, it is possible
to analyze the attacks on ciphers via algebraic or logic methods and tools. The most
straightforward approach to cryptanalysis using algebraic representations is given by
algebraic attacks (see [10]). The idea is to represent an entire cipher as a set of Boolean
polynomials or as a propositional formula and to derive secret bits by standard solving
methods of algebra or logic. Countermeasures against algebraic attacks have become a
standard for designing many symmetric cryptosystems. Hence easy algebraic relations
of low-degree complexity should preferably not exist in modern ciphers. However, the
connection between a convenient algebraic representation and security remains unclear.
For instance, the S-box of the block cipher AES has a very nice, compact algebraic
structure, but it is not known how to use this fact for an actual attack.

A fault attack is a special kind of side-channel attack (i.e. an attack based on informa-
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Chapter 1 Introduction

tion gained from the implementation) where the attacker has access to the (hardware)
implementation of the function and is able to intentionally inject physical disturbances
during the operation. Algebraic fault attacks (often abbreviated to AFA) combine alge-
braic and fault attacks. The main idea of AFA is to describe so-called fault equations
(i.e. equations which describe the fault propagation) using Boolean polynomials. Such
polynomials are appended to an algebraic representation of the cipher, and the resulting
system is solved for the secret key. For further reading on fault attacks, we refer to [12].

In the case of attacks which rely on an algebraic description of the cipher, we end up
with a system of Boolean polynomials that we would like to solve (or a Boolean formula
whose models we would like to determine). There exists a great variety of algorithms
coming from different areas such as commutative algebra, SAT or SMT, that can be
used to tackle these instances. In this doctoral thesis, we focus on algebraic and SAT
solving.

Algebraic solving techniques require the concept of Boolean polynomials, i.e. the ring
of Boolean polynomials Bn = P/F with the polynomial ring P = F2[x1, . . . , xn] over
the field F2 of two elements and F = 〈x21 + x1, . . . , x

2
n + xn〉. The above setting is very

convenient because we search for 0/1-solutions, i.e. we want to describe the set

Z(S) = {a ∈ Fn2 | f(a) = 0 for all f ∈ S}

for a set S ⊆ Bn. Solvers that search for more suitable generators of a given Boolean
ideal are referred to as algebraic solvers. Examples of algebraic solvers are the Gröbner
Basis Algorithm, the Border Basis Algorithm, the XL algorithm, etc. The basic principle
of algebraic solvers is to generate new polynomials in the ideal and simplify the newly
derived polynomials by the old ones in order to find new leading terms. For an overview
of algebraic solving techniques, see [10, Ch. 12].

Typically, logic solving requires propositional formulas of the shape

ϕ = (L1,1 ∨ · · · ∨ L1,n1) ∧ · · · ∧ (Lk,1 ∨ · · · ∨ Lk,nk
),

with literals Li,j , i.e. Li,j is a logical variable Xi or its negation X̄i. The task for SAT
solvers is to find an element in the set

S(ϕ) =
{
a ∈ {0, 1}n | ϕ(a) = 1

}
.

Many SAT solvers used in practise perform depth-first search and are based on DPLL.
Most of these solvers rely on a conflict-driven conflict-learning (CDCL) procedure, i.e.
on DPLL with the addition of clause learning. The CDCL solvers generate new clauses,
called learned clauses, that guide the computation. For a detailed background on SAT
solvers, see [17].

Note that the algebraic and logic solvers infer new constraints in a very different
way which seem to be complementary to each other. For instance, XOR constraints are
handled very differently in SAT solvers and in computer algebra systems. Even though
algebraic solvers support XOR reasoning due to addition over F2, they do not in general
perform very well on cryptographic instances. Thus a natural next step is to integrate
algebraic and SAT solving to combine the strengths of both solvers in one.
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1.2 The State-of-the-Art and the Contributions of This Dissertation

In principle, this is a task for finding suitable ANF to CNF conversions (such as
one in [11]), and vice versa, between different syntaxes such that their solutions (zeros
of polynomials and models of propositional formulas) are preserved. In this way, it is
possible to design a portfolio solver combining algebraic and logic techniques.

To push our understanding of the solvers even further, it is very handy to consider the
solving techniques as procedures for generating proofs in a proof system. For theory on
proof systems, see [71]. This allows designing combined proof systems that synthesize
polynomial calculus and resolution. Algebraic solvers use polynomial calculus, i.e. the
main inference rules are given as follows.

f g

f + g

f

xif

where f, g are Boolean polynomials in Bn and xi is an indeterminate. Resolution is
probably the most used inference rule in SAT solvers (e.g., the learned clauses in the
CDCL procedure are resolvents of the input formula). It corresponds to the rule of
inference

c ∪ {Xi} c′ ∪ {X̄i}

c ∪ c′

where c, c′ are clauses and Xi is a logical variable such that neither Xi nor X̄i are
contained in c∪c′. The first task towards a combined proof system is to merge syntaxes of
polynomial calculus and resolution. Because products of linear polynomials of the form
xi or xi+1 correspond to clauses (see [60]), products of arbitrary linear polynomials over
F2 is a natural choice. This syntax corresponds to the notion of linear clauses in logic.
Based on this syntax, we have two more challenges, more precisely, to design convenient
rules of inference that operates with this structure and to implement solvers that are
based on the combined proof system.

1.2 The State-of-the-Art and the Contributions of This
Dissertation

In this section we sum up some questions we ask in this doctoral thesis and describe
the answers we provide. Because the questions are general, we give a case study (i.e. on
which subcase of the general question we focus on) for each question. Nevertheless, we
believe that the techniques we use and the principles taylored for a particular application
can be applied elsewhere. Moreover, we give an overview of state-of-the-art and related
work which is relevant to our contributions.

How to design and implement algebraic solvers for cryptanalysis?

Case study: the Boolean Border Basis Algorithm (BBBA).

From the historical point of view, first remarks how to compute border bases were
given in [83]. A complete description followed in [70]. However, the order ideals in [70]
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Chapter 1 Introduction

are restricted to a special form and depend on a term ordering. For a computation of
border bases that does not depend on any term ordering, we refer the reader to [67].
The characterizations of border bases were given in [69]. The only non-high-level imple-
mentation of the BBA known to the author is the one in ApCoCoA [109].

In Chapter 3 we give a detailed description of the Border Basis Algorithm (BBA) and
several improvements how to enhance this algorithm for cryptanalytic use. In particular,
we introduce the Boolean Border Basis Algorithm (BBBA) which is taylored to Boolean
polynomials. We provide details on how to design suitable data structures used in the
BBBA (e.g. coefficient matrices, terms, order ideals, etc.). The BBBA overcomes some
problems of the Gröbner Basis Algorithm [72, Ch. 2] (GBA). For instance, the degree is
not increased as greatly as during the GBA, and only the linear reductions are used in
the BBA, unlike the normal remainder reductions in the GBA. Altogether, we introduce
the first specialized implementation of the Boolean Border Basis Algorithm in C++.

How to integrate algebraic and SAT solving?

Case study: an integration of the Boolean Border Basis Algorithm (BBBA) with the
SAT solver antom [101].

For an integration of SAT solvers with the Gröbner basis algorithm, we refer to [114],
[87] or [37]. A combination of a SAT solver with the XL algorithm can be found in [30].
For various methods dealing with XOR clauses, i.e. linear polynomials, we refer the reader
to [13,75] or to [106] for a concrete implementation.

In Chapter 4 we describe an integration of the Boolean border basis solver and a SAT
solver via communication interface in a portfolio fashion. A special subproblem of this
question we deal with is to find suitable conversions between sets of clauses (CNF) and
sets of Boolean polynomials in ANF. Whereas the reverse conversion has been studied
before (see [11]), the CNF to ANF conversion has been achieved predominantly via a
standard method in [60] which tends to produce many polynomials of high degree. Based
on a block-building mechanism, we design a new blockwise algorithm for the CNF to
ANF conversion which is geared towards producing fewer and lower degree polynomials.
The resulting integration using conversions is the first framework for combining a border
basis solver and a SAT solver in the literature. Furthermore, we provide examples where
the integration outperforms the base solvers.

How to design combined proof systems and solvers based on them?

Case study: the proof system SRES which uses the syntax consisting of linear clauses
and the rule of inference sres.

Let us mention some previous contributions to the topic of combining the resolution
calculus and the polynomial calculus into a new proof system, and compare them to s-
resolution. The proof system RES-LIN in [61] admits linear clauses, which correspond to
our linearly split polynomials, but uses only 1-resolution steps, whereas the proof system
in [13] works only for XOR clauses (i.e., linear Boolean polynomials) and relies on Gaußian
elimination. Moreover, the proof system RLIN in [96] applies a more general addition
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1.2 The State-of-the-Art and the Contributions of This Dissertation

of linear factors than s-resolution and does not target the main idea of S-polynomials,
namely cancellation of leading terms. Apparently, these proof systems have not led to
efficient implementations. Moreover, we are not aware of any actual implementation of
a solver for sets of linear clauses.

In Chapter 5 we study a combination of resolution and polynomial calculus. Using
a syntax allowing products of linear polynomials that correspond to linear clauses, we
taylor a special rule of inference, called s-resolution (sres), and a new proof system
SRES. Because of its strong algebraic background, we call sres an algebraic extension
of resolution. Our main goal here is to lift up the concepts known from SAT solving
of sets of clauses to solving of set of linear clauses and to implement solvers based on
SRES. In particular, we describe a closure and DPLL-based algorithm which use SRES.
We implement both those algorithms in python. Furthermore, we provide a description
of a benchmark which is hard for resolution-based SAT solvers but has short proofs in
SRES.

What about breaking real-world cryptographic primitives?

Case study: algebraic fault attacks on LED and small-scale AES using the tool Auto-
Fault, algebraic fault attacks on SHA-1 and SHA-2 using a programmatic SAT solver
based on MapleSAT [80].

The standard reference for hand-crafting fault equations for AES and LED is [65,112].
A framework for automatically creating fault equations can be found in [115]. The secret
is determined by solving the set of constraints describing the cryptosystem under attack,
i.e. an algebraic representation has to be created. Countermeasures against fault attacks
include low-level approaches like adding shields to cover metallization levels [77], placing
sensors in the circuitry [95], or higher-level methods such as error-detecting codes [66].

The initial work on fault attacks on the SHA family goes back as far as [78], where a
differential fault attack is applied to SHACAL-1 (i.e. a block cipher adopting the structure
of SHA-1). Authors of [51] extended the attack to SHA-1. Because the structure of SHA-
1 is more difficult than SHACAL-1, they needed more than a thousand fault injections
to derive a message.

In Chapter 6 we discuss fault attacks on scaled variants of the block ciphers AES and
the lightweight cipher LED. Instead of crafting fault equations manually, we introduce
the tool AutoFault for creating automatic fault equations. To push the automation even
further, the equations are derived automatically from the hardware description of the
cryptosystem. Moreover, we use various new ways how algebraic fault attacks (AFA)
can be encoded.

In contrast to [115], AutoFault uses hardware descriptions which are usually publicly
available. To the best of our knowledge, AutoFault is the first approach to breaking
LED-64 using no “manual” cryptanalytic information (that is, without manually derived
constraints beyond the circuit or the fault descriptions). Comparing AutoFault to
statistical approaches, e.g. in [48, 79], a successful AFA requires less fault injections,
but of higher precision.

In Chapter 7 we introduce a new approach to AFA using programmatic SAT solvers.
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Chapter 1 Introduction

The programmatic interface is used to strengthen the performance of the base solver
on the PREIMAGE problem of the SHA families. While encoding SHA into CNF in the
similar manner as in [91], we observed that the resulting CNF does not perform well
with the respect to the native Boolean Constraint Propagation (BCP) of the SAT solver
MapleSAT [80]. This problem is captured by the notion of a special version of general
arc consistency (GAC).

The propagation can be easily enhanced via the programmatic interface. Moreover,
the programmatic interface can implement other features of the attack (e.g. checking
of message candidates, etc.) that has to be taken care of otherwise from the “outside”
of the solver. Our attack via the programmatic interface outperforms the approaches
in [62], [51] and [50] both in terms of the number of fault injections and solving time.

1.3 Structure and Content

Every chapter in this dissertation starts with a motivation, an overview of related
work and its content. Because of this, the chapters can be read as standalone parts
with a few references to Chapter 2. The main chapters (i.e. all excluding the first two)
finish with experiments that illustrate the performance of the implementations. In the
following paragraphs, we outline the structure and the content of each chapter.

In Chapter 2 we recall some fundamentals from algebra and logic. Moreover, we give
a small introduction to side-channel cryptanalysis.

In the beginning of Chapter 3 we give the definition of border bases. In its further
sections we focus on the theory regarding the Boolean Border Basis Algorithm and deal
with implementation aspects of this algorithm. This chapter is based on [53,55,58,59].

Chapter 4 is divided into two parts. In the first part, we recall various conversions
between ANF and CNF. In particular, we introduce a new blockwise algorithm for the
CNF to ANF conversion. In the second part, we use these conversions for an integration
of algebraic and SAT solving, more precisely, for an integration of the border basis solver
with a CDCL SAT solver via a communication interface. This chapter is based on the
articles [53–55].

In Chapter 5 we start with some fundamentals from the theory of proof systems and
define a new proof system SRES. After we prove that its rules of inference are sound and
SRES is implicationally and refutationally complete, we turn our attention to solving
methods based on SRES. We focus on closure algorithms and algorithms that are based
on DPLL. This chapter is based on [56,57].

In Chapter 6 we give a brief overview of the block ciphers AES, small-scale AES
(ssAES), and LED. Then we explain how to apply a practical AFA using our new tool
AutoFault to these ciphers. This chapter is based on [28,29,46].

In Chapter 7 we recall some parts from the theory of constraint satisfaction problems.
After describing SHA-1 and SHA-2 hash functions, we introduce an inversion attack
using programmatic solvers. Specifically, we explain its two basic components: the
programmatic propagator and the programmatic conflict analyzer. This chapter is based
on [84].

At the end of this doctoral thesis, there is a list of all our publications relevant to
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1.3 Structure and Content

this dissertation. The results in this doctoral thesis were presented in the following
conferences and workshops 1: ICMS, FLoC, CP, MACIS, SYNASC, ISSAC, FDTC,
TRUDEVICE, IVSW, CAI. Article [57] has been accepted for publication by the Journal
of Symbolic Computation.

1If a workshop was a part of a larger conference, we list only the conference to which the workshop
was affiliated.
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Chapter 2

Background

Motivation In this chapter we point out basic definitions and notions from algebra,
logic and cryptography that are going to be used throughout the thesis. The emphasis
is put on recalling some techniques from algebraic and SAT solving. For this purpose,
we need a sufficient theoretical background in the first subsections. Basically, algebraic
techniques over F2 require the concept of Boolean polynomials and are based on rewriting
polynomials and saturation of an ideal. In contrast to this approach, CDCL SAT solvers
are based on “intelligent” depth-first search. Both approaches have pros and cons. On
one hand, algebraic solvers provide native XOR reasoning due to addition over F2, solve
harder problems than SAT (namely describing the whole set of solutions), but are usually
slower than SAT solvers, and suffer from a higher space complexity. On the other hand,
logic solvers do not typically support XOR, are usually fast (because they search only for
one solution at a time) and space efficient. Thus, this chapter enables us later to study
the solvers (or their combinations) and to apply them in fault injection attacks.

Literature The notations and definitions regarding commutative algebra adhere to the
book [72]. The theory on border bases is taken from [73, Sect. 6.4] and [70]. The sections
about Boolean functions and logic background are mostly inspired by [35]. The part
about Boolean polynomials follows [22], whereas the part about SAT solving is based
on [17]. The final sections about cryptology are along lines of [108]. We allow us to
add a certain degree of flexibility, i.e. by modifying some algorithms or concepts slightly,
such that the text gives us a stable background for the next chapters. Further related
literature is given in each section separately.

Structure and contents First of all, we define basic “vocabularies” for algebra and
logic. In the next step, we look into the underlying ideas behind various solving tech-
niques. The chapter is concluded by a small introduction to block ciphers, hash func-
tions, and side-channel cryptanalysis.

2.1 Some Algebra Fundamentals

In this section we recall basic definitions and known results from commutative algebra
and introduce useful notation. The terminology follows to the notation given in [72].
We start with basic definitions regarding terms.

Definition 2.1. (a) The set Tn = {xα1
1 · · ·xαn

n | αi ≥ 0} is called the set of terms in
the indeterminates x1, . . . , xn.

9



Chapter 2 Background

(b) The set of squarefree terms in the indeterminates x1, . . . , xn is defined as the set
Sn =

{
xα1
1 · · ·xαn

n | αi ∈ {0, 1}
}

.

(c) Given a term t = xα1
1 · · ·xαn

n ∈ Tn, the tuple (α1, . . . , αn) ∈ Nn is called the expo-
nent vector of the term t.

(d) The degree of a term t = xα1
1 · · ·xαn

n ∈ Tn, denoted by deg(t), is defined as deg(t) =
α1 + · · ·+ αn. We set deg(0) = −1.

Zero exponents are often omitted in power products. For instance, we write x1x2
instead of x11x

1
2x

0
3, etc. We order terms in Tn and Sn by a term ordering σ which is

defined as follows.

Definition 2.2. Let σ ⊂ Tn × Tn be a binary relation on Tn. We write t1 ≥σ t2 if
(t1, t2) ∈ σ.

(a) The relation σ is called a term ordering if the following conditions are satisfied
for all t1, t2, t3 ∈ Tn.

(i) t1 ≥σ t2 or t2 ≥σ t1
(ii) t1 ≥σ t1

(iii) t1 ≥σ t2 and t2 ≥σ t1 imply t1 = t2

(iv) t1 ≥σ t2 and t2 ≥σ t3 imply t1 ≥σ t3
(v) t1 ≥σ t2 implies t1t3 ≥σ t2t3

(vi) t ≥σ 1 for all t ∈ Tn

(b) The relation σ is called degree compatible if t1 ≥σ t2 for t1, t2 ∈ Tn implies
deg(t1) ≥ deg(t2).

Similar interpretations are used for “>σ”, “<σ” and “≤σ”, e.g. t1 >σ t2 for t1, t2 ∈ Tn
means t1 ≥σ t2 and t1 6= t2, etc. The most useful term orderings are the lexicographic or-
dering Lex, the degree-lexicographic ordering DegLex and the degree-reverse-lexicographic
ordering DegRevLex. Their definitions can be found in [72, Sect. 1.4]. Now we consider
the following special sets of terms that are closed under division. As usual, we define
aT = {a · t | t ∈ T} for T ⊂ Tn and a ∈ Tn, and a | b denotes divisibility of b by a.

Definition 2.3. (a) A finite (non-empty) subset O of Tn is called an order ideal if
t ∈ O and t′ | t for t′ ∈ Tn imply t′ ∈ O .

(b) Let O be an order ideal in Tn. A set of terms C = {t1, . . . , tk} ⊆ O is called a set of
cogenerators of O (or we say that C cogenerates O) if every term in O divides
at least one of the terms t1, . . . , tk. In this case we write 〈C〉OI = O.

(c) A set of cogenerators {t1, . . . , tk} of an order ideal is called minimal if no term ti
divides tj for j 6= i.

10



2.1 Some Algebra Fundamentals

(d) Given an order ideal O in Tn, we call ∂O = (x1O∪ · · · ∪xnO) \O the border of O.

Notice that an order ideal is not the set of terms in a polynomial ideal, but an ideal
in the category of partially ordered sets. Order ideals are represented by their (unique)
minimal sets of cogenerators. Given a set of cogenerators C of an order ideal that
is not minimal, we iteratively remove all terms t ∈ C such that t divides t′ for some
term t 6= t′ ∈ C. The next example illustrates an order ideal and its border in two
indeterminates.

Example 2.4. Let O = {1, x1, x2, x1x2}. Then O is an order ideal in T2 cogenerated
by C = {x1x2} with its border ∂O = {x21, x21x2, x1x22, x22}. This order ideal and its
border can be illustrated as follows.

.................................. ................

......

......

......................

................

xi1

xj2

• •
• •

1

◦ ◦
◦
◦ 4

Next we define the squarefree part of a set of terms.

Definition 2.5. Let S be a set of terms in Tn.

(a) Then the set S sf = S ∩ Sn is called the squarefree subset of S.

(b) In particular, (∂O) sf is called the squarefree border of an order ideal O, i.e.
(∂O) sf =

(
(
⋃n
i=1 xiO) \ O

)
∩ Sn.

Notice that the squarefree subset of a set of terms can be empty.

In the following we let K be a field and P = K[x1, . . . , xn] a polynomial ring over K.
Next we recall some definitions regarding polynomials.

Definition 2.6. Let σ be a term ordering in Tn. Let f ∈ P be a non-zero polynomial
of the form f = c1t1 + · · · + ckfk with ti ∈ Tn and ci ∈ K \ {0} such that t1 >σ t2 >σ
· · · >σ tk.

(a) The support of f is defined as the set Supp(f) = {t1, . . . , tk} ⊂ Tn.

(b) The polynomial f is said to have squarefree support if Supp(f) ⊂ Sn.

(c) The leading term of f is the largest term in the support of f w.r.t. σ. We write
LTσ(f) = t1.

(d) The degree of f is defined by deg(f) = max{deg(t) | t ∈ Supp(f)}.

(e) A set of polynomials G ⊂ P is called (linearly) LTσ-interreduced if LTσ(g) 6=
LTσ(g′) for all g, g′ ∈ G with g 6= g′.

11



Chapter 2 Background

(f) The set Var(f) is defined as the set of all indeterminates appearing in Supp(f). It
is called the set of indeterminates of f .

(g) We write Supp(G) =
⋃
g∈G Supp(g) and Var(G) =

⋃
g∈G Var(g) for a finite set of

polynomials G ⊂ P .

Given a term ordering, a finite set of polynomials can be represented by a matrix as
follows.

Definition 2.7. Let G = (f1, . . . , fs) ∈ P s be a tuple of polynomials. Let Supp(G) =
{tk, . . . , t1} such that tk >σ · · · >σ t1. The coefficient matrix of G w.r.t. the term
ordering σ is a matrix in Ks×k denoted by CMσ(G) and defined by

(CMσ(G))i,j =

{
the coefficient of tj in fi if tj ∈ Supp(fi),

0 otherwise.

When we speak of coefficient matrices w.r.t. sets of polynomials (and not tuples as
above), we do not require any special order of the rows of the coefficient matrix. Given a
tuple of polynomials G ⊆ P , we can linearly LTσ-interreduce G via Gaußian elimination
on the coefficient matrix of G. Thus, the coefficient matrix of a set of polynomials G is
in row echelon form (REF) if and only if G is linearly LTσ-interreduced.

Example 2.8. Let σ = DegLex and P = Q[x1, x2, x3]. The polynomials G = (f1, . . . , f5)
given on the right-hand side correspond to the matrix on the left.

x1x2x3 x1x2 x1 x2 1


3 1 1 2 1 ↔ f1 = 3x1x2x3 + x1x2 + x1 + 2x2 + 1
0 1 0 0 1 ↔ f2 = x1x2 + 1
0 4 1 0 1 ↔ f3 = 4x1x2 + x1 + 1
0 0 0 2 0 ↔ f4 = 2x2
0 0 0 3 1 ↔ f5 = 3x2 + 1

The linear LT-intereduction of G and a row echelon form of CMσ(G) are given below.
The third row comes from −4f2 + f3 and the fifth row is equal to 3f4 − 2f5.

x1x2x3 x1x2 x1 x2 1


3 1 1 2 1 ↔ 3x1x2x3 + x1x2 + x1 + 2x2 + 1
0 1 0 0 1 ↔ x1x2 + 1
0 0 1 0 −3 ↔ x1 − 3
0 0 0 2 0 ↔ 2x2
0 0 0 0 −2 ↔ − 2

4

Next we continue with definitions and notations regarding ideals and monomial ideals.

Definition 2.9. Let f1, . . . , fs be polynomials in P . Let σ be a term ordering.

12



2.1 Some Algebra Fundamentals

(a) The ideal in P generated by a set of polynomials {f1, . . . , fs} ⊂ P is denoted by
〈f1, . . . , fs〉.

(b) The K-linear subspace of P generated by a set of polynomials {f1, . . . , fs} ⊂ P
is denoted by 〈f1, . . . , fs〉K .

(c) An ideal generated by a set of terms is called a monomial ideal.

(d) For an ideal I ⊂ P , the monomial ideal LTσ(I) = 〈LTσ(f) | f ∈ I \ {0}〉 is called
the leading term ideal.

(e) For an ideal I ⊂ P , the set Oσ(I) is defined by Oσ(I) = Tn \ LTσ(I).

(f) An ideal I in P is called 0-dimensional if P/I is a finite dimensional K-vector
space.

Let us provide some background to the definition given in (f). The polynomial ring
P is also a vector space over K with a basis given by all terms in Tn. Any ideal I can
be viewed as a K-vector subspace of P , and thus P/I is K-vector space as well.

In the next proposition we recall some interesting connections between order ideals
and monomial ideals. The proofs can be found in [73, Sect. 6.4.A].

Proposition 2.10. Let I be a 0-dimensional ideal in P .

(a) The complement of an order ideal is the set of terms of a monomial ideal in P .

(b) For every term ordering σ, the set Oσ(I) is an order ideal.

(c) The residue classes of the elements in Oσ(I) form a K-vector space basis of P/I.

Let F2 = Z/2Z be the field of two elements. In the rest of this section, we focus on
the case K = F2, i.e. P = F2[x1, . . . , xn].

Definition 2.11. Let P = F2[x1, . . . , xn].

(a) The ideal F = 〈x21 + x1, . . . , x
2
n + xn〉 is called the field ideal.

(b) The ring Bn = P/F called the ring of Boolean polynomials in the indeterminates
x1, . . . , xn.

(c) Polynomials in P with squarefree support are said to be in algebraic normal form
(ANF).

(d) A map ϕ : Fn2 → F2 is called a Boolean function in n variables.

(e) A map ψ : Fn2 → Fm2 for m ∈ N is called an m-dimensional Boolean map in n
variables.

(f) Let a = (a1, . . . , an) ∈ Fn2 and f ∈ P . The notation f(a) denotes the evaluation
of f at the point a. In particular, f |xi 7→ai denotes the polynomial which is obtained
by substituting xi 7→ ai into f .

13



Chapter 2 Background

The ideal F is called the field ideal, since it is the vanishing ideal of Fn2 . An m-
dimensional Boolean map ψ in n variables can be viewed as a collection of Boolean
functions ϕ1, . . . , ϕm in n variables such that ψ(a) = (ϕ1(a), . . . , ϕm(a)). Similar nota-
tions as in (f) are used for Boolean maps and functions. For a map ψ, ψ|xi 7→ai denotes
the map obtained from ψ by fixing the coordinate xi = ai.

The following proposition contains some useful facts about Boolean polynomials and
functions.

Proposition 2.12. Let P = F2[x1, . . . , xn]. Let R be the set of all polynomials in P
which are in ANF.

(a) The set R is a set of representatives of the residue classes in Bn. We have #R = 22
n

.

(b) Every ideal in Bn uniquely corresponds to an ideal in P containing the field ideal.

(c) Let I be an ideal in P with F ⊂ I. Then I is zero-dimensional, radical (i.e. I =√
I = {f ∈ I | f i ∈ I for some i ∈ N+}), and principal (i.e. generated by one

Boolean polynomial).

(d) Let ϕ be a Boolean function in n variables. Then there exists a unique polynomial
r ∈ R in ANF such that ϕ(a) = r(a) for all a ∈ Fn2 . Conversely, every polynomial
r ∈ R corresponds to a unique Boolean function in n variables.

(e) We have f2 = f in Bn for all f ∈ Bn.

Proof. (a) Consider a residue class g + F in Bn with g ∈ P . We divide g by F with a
remainder (see [72, Th. 1.6.4]), and we get g = h+ f with a squarefree polynomial
h ∈ R and f ∈ 〈F 〉. Thus, g − h ∈ F , i.e. h represents the residue class g + F . We
have #Sn =

(
n
0

)
+
(
n
1

)
+ · · · +

(
n
n

)
= 2n. Because each coefficient of the squarefree

term is 0 or 1, we have #R = 22
n
.

(b) Let us define a map α as follows. We set α(I) = {g + F | g ∈ I} ⊂ Bn for ideals
I in P with F ⊆ I, i.e. the domain of α is the set of all ideals in P . Note that
α(I) is an ideal in Bn. Conversely, we define a map β as follows β(J) = {h ∈
P | h + F ∈ J} ⊂ P , i.e. the domain of β is the set of ideals in Bn. Note that
β(J) is an ideal in P , and F ⊂ β(J). Now, it is sufficient to show that α ◦ β and
β ◦ α are identities on the set of ideals in P and Bn. We prove this for β ◦ α. The
other identity is analogous. Let I be an ideal with F ⊂ I ⊂ P . Then we have
β(α(I)) =

{
h ∈ P | h+ F ∈ {g + F | g ∈ I}

}
= {g ∈ P | g ∈ I} = I.

(c) Any residue class in P/I is represented by r+I for some r ∈ R. Hence the dimension
of the F2-vector space is at most 2n. The proof that I is radical can be found
in [22, Th. 2.2.4]. Every ideal in P is finitely generated by Hilbert’s basis theorem,
and hence an ideal in the factor ring P/F is finitely generated as well. To show that I
is principal, it is sufficient to prove that 〈f, g〉 = 〈fg+f+g〉 holds in Bn for f, g ∈ Bn.
The claim then follows by induction. The inclusion “⊇” is trivial. Conversely, we
have f(fg + f + g) = fg + f + fg = f and g(fg + f + g) = fg + fg + g = g in Bn
which proves the other inclusion.
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2.1 Some Algebra Fundamentals

(d) Let us prove the first statement by induction on n. Let ϕ be a Boolean function
in n = 1 variables. Then ϕ is equivalent to one of these polynomials in ANF:
0, 1, x1, x1 + 1. Let ϕ is a Boolean function in n > 1 variables. We show that the
map ϕ can be decomposed to x1 ·ϕ|x1 7→1 + (x1 + 1) ·ϕ|x1 7→0. Indeed, if x1 = 0, then
the right-hand side is ϕ|x1 7→0, and if x1 = 1, we get ϕ|x1 7→1. Note that ϕ|x1 7→1 or
ϕ|x1 7→0 contain at most n − 1 variables. Thus, the claim follows by the induction
hypothesis.

For the converse implication, it suffices to consider the function defined by a 7→ r(a).
The uniqueness follows from the fact that #R = 22

n
is equal to the cardinality of

the set of Boolean functions in n variables, as shown above.

(e) It suffices to show the equivalent equality f(f + 1) = 0. Let f = t1 + t2 + · · · + tk
with ti ∈ Sn such that t1 >σ · · · >σ tk for some term ordering σ. We count the
occurrences of products titj in the expression (t1 + · · ·+ tk)(t1 + · · ·+ tk + 1). There
are two ways how to obtain ti, namely from the multiplications titi and ti · 1. There
are two ways how to obtain titj with i 6= j, namely from the multiplications titj and
tjti. Thus, the expression equals to 2 · h for some h ∈ Bn, and henceforth it is equal
to 0 in Bn.

Claim (a) is the reason why we identify polynomials in ANF with elements in Bn. In
view of Claim (d), we see that any Boolean function can be described by a polynomial
in ANF. Thus Boolean polynomials in ANF correspond 1-1 to Boolean functions.

In the next definition we are interested in F2-rational zeros of a set of polynomials in
P . Because we have 0k = 0 and 1k = 1 for k ∈ N+, we do arithmetics in P modulo the
ideal F = 〈x21 + x1, . . . , x

2
n + xn〉, i.e. we are in the setting of Boolean polynomials.

Definition 2.13. Given a set S = {f1, . . . , fs} ⊆ Bn, we define the set of F2-rational
zeros of S by

Z(S) = {a ∈ Fn2 | f(a) = 0 for all f ∈ S}.

By the following proposition, the set Z(S) does not depend on the particular choice
of generators of the ideal I = 〈f1, . . . , fs〉, but only on the ideal itself. We often omit
the curly brackets and write only Z(f1, . . . , fk).

Proposition 2.14. Let S = {f1, . . . , fs} ⊆ Bn and I = 〈S〉.

(a) We have Z(S) = Z(I).

(b) Let J be an ideal in Bn. We have I = J if only if Z(I) = Z(J).

(c) We have 1 ∈ I if only if Z(I) = ∅.

Proof. (a) Let us prove the inclusion “⊇”. Clearly, we have S ⊆ I. It follows that
Z(I) ⊆ Z(S). Next, we prove “⊆”. Let a ∈ Z(S) and g ∈ 〈S〉, i.e. g =

∑
hifi for

some hi ∈ Bn. We get g(a) =
∑
hi(a)fi(a) = 0, and thus a ∈ Z(I).
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(b) The implication “⇒” follows from Claim (a) because of I = J = 〈S〉. Let us prove
the other direction “⇐”. By Proposition 2.12(c) we write I = 〈f〉 and J = 〈g〉 with
f, g ∈ Bn that are in ANF. By Claim (a) we get Z(f) = Z(〈f〉) = Z(〈g〉) = Z(g).
Define two Boolean functions ϕ,ψ : Fn2 → F2 by ϕ(a) := f(a) and ψ(a) := g(a)
for a ∈ Fn2 . These two functions are the same because it holds ϕ(a) = ψ(a) for all
a ∈ Fn2 . By Prop. 2.12(d) we obtain f = g.

(c) The proof follows from the strong version of Hilbert’s Nullstellensatz (see [22, Cor.
2.2.5]).

Note that the only Boolean polynomial f with Z(f) = ∅ is the constant polynomial 1.
To the previous definition we associate the following decision problem.

Problem: Polynomial system solving over F2 (PSS)
Input: A set of Boolean polynomials S ⊂ Bn.
Question: Is there a zero a ∈ Fn2 such that a ∈ Z(S)?

The complexity class of decision problems NP (nondeterministic polynomial time) is
a set of decision problems whose positive solutions can be verified in polynomial time.
We say that a decision problem D is in the complexity class of the NP-hard problems
when every problem in NP can be reduced to D using a polynomial time reduction.
The complexity class NP-complete is the intersection of the classes NP-hard and NP. For
more details on complexity theory and its basic definitions, see [3].

The problem PSS is known to be NP-complete (even over any finite field, see [45,
Appendix 7]). The search version of the problem is to find a common zero if one exists.
In principle, the complexity of the search problems does not differ from the decision
problems, because the search versions are solvable in polynomial time given an oracle
for the decision versions.

2.2 Some Logic Fundamentals

In this section we recall basic definitions and known results from logic and introduce
useful notation. The terminology adheres to the notation given in [35,104].

Definition 2.15. (a) The alphabet of propositional logic consists of

• propositional variables (sometimes called logical variables) X1, . . . , Xn,

• propositional connectives such as logical negation “¯” (sometimes denoted
by “¬”), disjunction “∨”, conjunction “∧”, exclusive or XOR (sometimes denoted
by “⊕”),

• parentheses and the constants True and False.

(b) Propositional logic formulas or Boolean formulas in n variables are well-
formed strings over the alphabet defined in (a) by finitely many recursive application
of the rules (i), (ii) and (iii).

(i) The constants True and False are propositional logic formulas.
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(ii) The logical variables X1, . . . , Xn are propositional logic formulas.

(iii) If ϕ and ψ are propositional logical formulas, then (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ ⊕ ψ)
and (ϕ̄) are propositional logic formulas.

(c) For a propositional logical formula ϕ, we denote Var(ϕ) the set of all logical vari-
ables appearing in ϕ.

In fact, the connective XOR in the definition is often omitted. We mention it here
because we frequently deal with XOR in the next chapters. To distinguish variables in
a Boolean polynomial ring and in formulae, we use lower-case letters for variables in
Boolean polynomials and capital letters for the corresponding logical variables. More-
over, we identify True ≡ 1 and False ≡ 0, e.g. we have 0̄ = 1 and 1̄ = 0, etc. Because
the addition in F2 is done modulo 2, it corresponds to the XOR operation. We go on with
the definition of an another normal form, called CNF.

Definition 2.16. (a) A literal is a logical variable Xi or its negation X̄i. A literal of
form Xi is called positive, and a literal of form X̄i is called negative.

(b) A clause is a (finite) set of literals.

(c) A clause c is called a unit clause if #c = 1.

(d) A Boolean formula of the shape

ϕ = (L1,1 ∨ · · · ∨ L1,n1) ∧ · · · ∧ (Lk,1 ∨ · · · ∨ Lk,nk
),

with literals Li,j is said to be in conjunctive normal form (CNF).

(e) We say that the formula ϕ in (d) is given by its set of clauses

C =
{
{L1,1, . . . , L1,n1}, . . . , {Lk,1, . . . , Lk,nk

}
}
.

Usually, we assume that a CNF formula ϕ is given by its set of clauses C, and we
frequently identify ϕ and C.

So far we have looked only at the syntax of propositional formulae. Now we turn our
attention to semantics. In the following we recall some definitions related to satisfiability
of a Boolean formula.

Definition 2.17. Let ϕ,ϕ1, . . . , ϕm, ψ be propositional formulae in the logical variables
X1, . . . , Xn.

(a) A map α : {X1, . . . , Xn} → {0, 1, ∗} is called an assignment of the logical variables
X1, . . . , Xn. The symbol “∗” denotes “not assigned”. We write the map α in the form
Xi1 7→ ai1 , . . . , Xij 7→ aij for ai1 , . . . , aij ∈ {0, 1} with 1 ≤ i1 < i2 < · · · < ij ≤ n,
i.e. we omit the unassigned variables.

(b) In the setting of (a), if α is given by X1 7→ a1, . . . , Xn 7→ an for a1, . . . , an ∈ {0, 1},
we call α a complete assignment of the logical variables X1, . . . , Xn. In this case,
we write also α as a tuple a = (a1, . . . , an) ∈ {0, 1}n.
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(c) An assignment of the logical variables X1, . . . , Xn of the form Xi1 7→ ai1 , . . . , Xij 7→
aij for ai1 , . . . , aij ∈ {0, 1} with 1 ≤ i1 < i2 < · · · < ij ≤ n is called a partial
assignment of the logical variables X1, . . . , Xn if there exists k ∈ {1, . . . , n} such
that k /∈ {i1, . . . , ij}.

(d) Given a ∈ {0, 1}n, ϕ(a) denotes the truth value obtained by assigning the variables
Xi in the formula ϕ to ai for i = 1, . . . , n.

(e) Given a partial assignment α given by Xi1 7→ ai1 , . . . , Xij 7→ aij , ϕ|α denotes the
Boolean formula obtained by assigning the variables Xij in the formula ϕ to aij for
all ai1 , . . . , aij ∈ {0, 1}.

(f) The complete assignment a ∈ {0, 1}n is called a satisfying assignment or a model
for ϕ if ϕ(a) = 1.

(g) The set of satisfying assignments (or models) for a propositional formula ϕ in n
logical variables is defined as

S(ϕ) =
{
a ∈ {0, 1}n | ϕ(a) = 1

}
.

(h) We say that ϕ1, . . . , ϕm semantically imply ψ if S(ϕ1 ∧ϕ2 ∧ · · · ∧ϕm) ⊆ S(ψ). In
this case we write ϕ1, . . . , ϕm |= ψ.

To the previous definition we associate the following decision problem.

Problem: The Boolean satisfiability problem (SAT)
Input: A set of clauses C in n logical variables.
Question: Is there a model a ∈ Fn2 such that a ∈ S(C)?

The problem SAT is known to be NP-complete. In other words, SAT is in NP and
reducible to PSS in polynomial time. The search version of the problem is to find a
satisfying assignment if one exists.

The following proposition establishes a connection between Boolean formulas in CNF
and Boolean functions.

Proposition 2.18. (a) Given a Boolean formula ϕ in n variables, there exists a Boolean
function ψ in n variables such that ϕ(a) = ψ(a) for all a ∈ Fn2 .

(b) Every propositional logic formula ϕ in n variables can be encoded in a Boolean
formula ψ in n variables which is in CNF and satisfies ψ(a) = ϕ(a) for all a ∈ Fn2 .

Proof. (a) The function ψ is given by a 7→ ϕ(a).

(b) We show that

ϕ ≡
∧

(a1,...,an)∈F

( ∨
i | ai=0

Xi

∨
j | aj=1

X̄j

)
= ψ

for F = {a ∈ Fn2 | ϕ(a) = 0}. Indeed, we have a ∈ F if and only if ψ(a) = 0, which
concludes the proof.
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From the logic point of view, a formula in ANF is constructed from the logical XOR
operation and the logical AND operation. By Proposition 2.18 and 2.12, we can consider
Boolean polynomials, Boolean functions, and propositional logic formulas (in CNF) as
equivalent from the semantic point of view – they are just different representations of
the same concept.

Example 2.19. The Boolean polynomial f = x1x2 + x1x3 + 1 ∈ B3 corresponds to the
formula ψ = (X1 ∧ X2) ⊕ (X1 ∧ X3) ⊕ 1. In other words, we have f(a) = ψ(a) for all
a ∈ {0, 1}3. Note that the corresponding CNF formula is equal to ψ = (X̄1 ∨ X̄2 ∨X3)∧
(X̄1 ∨X2 ∨ X̄3). 4

Rules of inference are used to derive new formulas from premises.

Definition 2.20. Let ϕ1, . . . , ϕm, ψ be propositional formulae in n logical variables.

(a) A rule of inference ri (of propositional logic) transforms premises, i.e. a set of
formulae, into a conclusion, i.e. a formula. Rules of inference are given in the
following form

ϕ1 ϕ2 . . . ϕm

ψ
(ri)

where ϕi are the premises and ψ is the conclusion. To simplify the notation, we also
write ϕ1, . . . , ϕm `ri ψ.

(b) Let ri be a rule of inference. We say that the rule of inference ri is correct (or
sound) if ϕ1, . . . , ϕm `ri ψ implies ϕ1, . . . , ϕm |= ψ.

(c) Let ri be a rule of inference. We say that the rule of inference ri is complete if
ϕ1, . . . , ϕm |= ψ implies ϕ1, . . . , ϕm `ri ψ.

It is meaningful to require that rules of inference are always sound, i.e. that they
preserve truth.

2.3 Algebraic Solvers

Solvers that search for more suitable generators of a given Boolean ideal are referred
to as algebraic solvers. Thus, they can be used to solve the problem PSS. Note that they
actually solve “harder” problems than PSS because they describe the whole solution set.
The basic principle of algebraic solvers is to generate new polynomials in the ideal and
to simplify the newly derived polynomials by the old ones in order to find new leading
terms. For an overview of algebraic solving techniques, see [17, Ch. 12]

Through the section we focus on algebraic solvers working over Boolean polynomials.
Thus, we set P = F2[x1, . . . , xn] and F = 〈x21 + x1, . . . , x

2
n + xn〉.

Algebraic solvers work with polynomials in ANF and use polynomial calculus (see [89])
as the main inference rule, i.e.,
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f g

f + g
(pca)

f

xif
(pcm)

where f, g ∈ Bn, and xi is an indeterminate. Polynomial calculus is sound (every
F2-rational zero of the premises is an F2-rational zero of the derived polynomial) and
complete (every semantic consequence, i.e. a polynomial in the ideal generated by the
premises, can be derived by a sequence of inference rules).

To start with, we present the concept of Gröbner bases (GB), the Gröbner basis
algorithm (GBA) and their Boolean variants.

Definition 2.21. Let I be an ideal in P = K[x1, . . . , xn] with a field K. Let σ be a
term ordering. Let G = {g1, . . . , gs} ∈ I \ {0} and F = 〈x21 + x1, . . . , x

2
n + xn〉.

(a) The set of polynomialsG is called a σ-Gröbner basis of I if LTσ(I) = 〈LTσ(g1), . . . ,
LTσ(gs)〉.

(b) We say that G is a reduced σ-Gröbner basis of I if the following conditions are
satisfied.

(i) For i = 1, . . . , s, the coefficient of the term LTσ(gi) in gi is equal to 1.

(ii) The set {LTσ(g1), . . . ,LTσ(gs)} is a minimal set of generators of LTσ(I).

(iii) For i = 1, . . . , s, we have Supp(gi − LTσ(gi)) ∩ LTσ(I) = ∅.

(c) Let K = F2, F ⊂ I, and let G ⊂ P be a finite set of Boolean polynomials in
ANF. The set G is called a Boolean σ-Gröbner basis (or a reduced Boolean
σ-Gröbner basis) of I if there exists a set F ′ ⊆ {x21 + x1, . . . , x

2
n + xn} such that

G ∪ F ′ is a σ-Gröbner basis (or a reduced σ-Gröbner basis) of I.

The last definition follows from the discussion in [22, Sect. 2.2] and Proposition 2.12.
Note that reduced Gröbner bases are unique. A standard way how to obtain a Gröbner
basis is given by the famous Buchberger algorithm introduced in his PhD thesis [25].
New polynomials in Buchberger’s algorithm are constructed by forming S-polynomials.

Definition 2.22. Let fi, fj ∈ P . The polynomial of form S(fi, fj) = tijfi− tjifj where
tij = lcm(LTσ(fi),LTσ(fj))/LTσ(fi) is called the S-polynomial of fi and fj .

The simplification is done by computing normal remainders (see [72, Sect. 1.6]), i.e. by
the division algorithm with remainder. The algorithm is referred to as NR. The output
of NR(s, S) for s ∈ P and S ⊂ P is the remainder of division s by S. (The algorithm
NR requires S to be a tuple of polynomials. Thus the set S is viewed as a tuple of
its elements.) Simple modifications of Buchberger’s algorithm gives us the Boolean
Buchberger algorithm described in Algorithm 2.1.

Algorithm 2.1 and many of its variants have several drawbacks. E.g., they tend
to create high degree S-polynomials (however, this problem is more striking for non-
Boolean versions). Subsequently, these high-degree polynomials are rewritten using NR,
which may be a very time-consuming procedure. In practice, the algorithm spends the
most of its time in reducing the last S-polynomial.

Algorithm 2.1 can be improved as follows.
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Algorithm 2.1 Buchberger (The Boolean Buchberger Algorithm)

Input: A set of polynomials S = {f1, . . . , fs} ⊂ P = F2[x1, . . . , xn] in ANF and a term
ordering σ.

Output: A Boolean σ-Gröbner basis of an ideal I = 〈S〉 such that F ⊂ I ⊂ P , and F
is the field ideal.

Require: The algorithm NR for computing normal remainders in [72, Th. 1.6.4].

1: S′ := S
2: Let Q be the set of all pairs (fi, fj) such that 1 ≤ i < j ≤ s.
3: while Q 6= ∅ do
4: Select (f, g) ∈ Q and remove it from Q.
5: Let s be the S-polynomial of f and g.
6: r := NR(s, (F ∪ S′))
7: if r 6= 0 then
8: Q := Q ∪ {(r, h) | h ∈ S′}
9: S′ := S′ ∪ {r}

10: end if
11: end while
12: return S′

• Pair selection. A careful selection of the pair in (f, g) in Step 3 greatly affects the
running time of the algorithm. The ultimate goal is to find simple polynomials (i.e.
with low degree and not many terms in the support) as soon as possible because
they simplify the system the most.

• Predicting zero reductions. During a run of the algorithm, many S-polynomials
are rewritten to zero, i.e. they are useless because they do not provide a new
leading term. There exist criteria that allow the algorithm to skip some of those
S-polynomials (see [93]).

• Reducing many S-polynomials at once. The polynomials in S can be represented
as the coefficient matrix M = CMσ(S). Firstly, we add new rows to M that
correspond to S-polynomials of polynomials in S. Secondly, we append rows that
correspond to possible reducers, i.e. polynomials of shape t · f with f ∈ S and
t ∈ Sn to the matrix M . Finally, computing REF of the whole matrix results in
reducing all S-polynomials simultaneously (see [42]).

Algorithm 2.1 does not implement any sophisticated reasoning in the ring of Boolean
polynomials. Rewriting using the field ideal can be done on a “deeper” level and not
“outside” in NR. For instance, we point out the implementation of Boolean Gröbner basis
algorithm using zero-suppressed decision diagrams in [22, Ch. 4]. For the (Boolean)
Gröbner basis algorithm, the library PolyBoRi [17] and the FGb library [42] provide
efficient actual implementations of such solvers. For further details of the theory of
Boolean Gröbner bases, we refer to [22, Ch. 2].

Linear algebra methods emerge naturally in polynomial system solving. One very
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common technique is linearization of a polynomial system. For instance, one can lin-
earize the system by introducing auxiliary indeterminates for each non-linear term in
the support and solve the resulting linear system by Gaußian elimination. This idea has
evolved into methods such as XL and XSL [33]. Note that this technique is quite similar
to the last improvement of Algorithm 2.1. We state the basic idea of linearization as
Algorithm 2.2.

Algorithm 2.2 Linearize (The Linearization Algorithm)

Input: A set S = {f1, . . . , fs} ⊂ Bn in ANF with Z(S) 6= ∅, a term ordering σ, a degree
bound d ∈ N+.

Output: A zero a′ ∈ Z(S); the string UNKNOWN otherwise.

1: Q := S ∪ {t · f | t ∈ Sn, f ∈ S, deg(t · f) ≤ d}
2: M := CMσ(Q)
3: Let R be the solution space of the linear system Mx = 0 over F2.
4: for a ∈ R do
5: Using the assignment a for terms in Supp(Q), deduce the assignment a′ for the

indeterminates x1, . . . , xn.
6: if fi(a

′) = 0 for all i = 1, . . . , s then
7: return a′

8: end if
9: end for

10: return UNKNOWN

The success of Algorithm 2.2 depends on a degree bound d. Note that each solution
in the set R, which is a finite (but potentially large) set, has to be verified. The solution
of the linearized system does not have to be compatible with the relations induced by
terms as illustrated in the next example.

Example 2.23. Let f1 = x1x2 + x2x3 ∈ B3 and f2 = x1 ∈ B3. The linearization of f1
yields g1 = y1 + y2 with the new indeterminates y1, y2. The polynomial f2 is already
linear. The assignment (y1, y2, x1) = (1, 1, 0) satisfies the linear system g1 = f2 = 0.
However, the assignment does not induce a valid solution for the indeterminates x1, x2, x3
of the initial system f1 = f2 = 0, because 1 = y1 = x1x2 is equal to zero under the
assignment x1 = 0. 4

The linear system Mx = 0 in Algorithm 2.2 can be solved by Gaußian elimination,
e.g. by computing a row echelon form of M . There are many improvements of this
approach. For instance, if the elimination yields a univariate polynomial h, then the
solution of the equation h = 0 can be used to branch the computation for the different
cases in Z(h), or a newly derived polynomial of small degree can be inserted into S and
treated as an input polynomial (see the concept of mutants in [2]).

Another approach to algebraic solving is elimination of linear polynomials such as
performed by the algorithm ElimLin [34]. Its main idea is to perform LT-interreduction
in order to obtain new linear equations. These linear equations are then substituted into
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the system. The procedure goes on eliminating indeterminates in the system until there
is no linear equation left. The idea of ElimLin is outlined in Algorithm 2.3.

Algorithm 2.3 ElimLin (The ElimLin Framework)

Input: A set of polynomials S = {f1, . . . , fs} ⊂ Bn in ANF and a term ordering σ.
Output: A set of linear polynomials L and a simplified set of polynomials S′ ⊂ Bn such

that 〈L ∪ S′〉 = 〈S〉.
1: L := ∅
2: S′ := S
3: Q := ∅
4: repeat
5: if 1 ∈ Q then
6: return ({1}, ∅)
7: else
8: for ` ∈ Q do
9: L := L ∪ {`}

10: S′ := S′ \ {`}
11: Rewrite S′ using LTσ(`) 7→ `− LTσ(`).
12: end for
13: end if
14: LTσ-interreduce S′ and save the result to S′.
15: Let Q be the set of all linear polynomials in S′.
16: until Q = ∅
17: return (L, S′)

Algorithm 2.3 is guided by the term ordering σ. In the version of [34], there is certain
freedom of choice which indeterminates are substituted and how the interreduction is
performed. Even though the algorithm seems to be easy to implement, it is actually
very difficult to handle the substitutions efficiently.

2.4 SAT Solvers

Algorithms which search for a satisfying assignment for a set of clauses are called SAT
solvers. In this section we focus mainly on DPLL-based solvers. However, there exist
other complete solvers such as lookahead solvers, or hybrid approaches like cube-and-
conquer (e.g., see [52]). In order to find the whole solution space or count the number
of solutions, so-called enumeration or #SAT solvers are used. In this section we assume
that a set of clauses C is always finite. The section is based on [17].

Resolution is probably the most used inference rule in SAT solvers.

Definition 2.24. Let C be a (finite) set of clauses. Let c, c′ ∈ C be clauses, and let Xi

be a logical variable.
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(a) Resolution corresponds to the rule of inference

c ∪ {Xi} c′ ∪ {X̄i}

c ∪ c′
(res)

where neither Xi nor X̄i are contained in c ∪ c′.

(b) The conclusion c∪ c′ of the resolution rule in (a) is called the resolvent of c∪{Xi}
and c′ ∪ {X̄i}.

(c) Unit propagation (UP, up), sometimes called unit resolution, is the special case
of the resolution rule defined in (a) in which either c or c′ is the empty clause.

(d) Boolean constraint propagation (BCP) refers to the simplification of C de-
scribed by the following steps.

(i) Let U = ∅.
(ii) While there exists a unit clause c = {L} ∈ C with a literal L, and while C

does not contain the empty clause, repeat Steps (iii)–(v).

(iii) Remove c from C, and append c to U .

(iv) Remove all clauses from C which contain the literal L.

(v) Remove the literal L̄ from every clause in C which contains the literal L̄.

(vi) Return C ∪ U .

(e) Resolution closures are defined inductively as follows.

(i) Res0(C) = C

(ii) Res1(C) = C ∪ {r | r is resolvent of two clauses in C}
(iii) Resi+1(C) = Res(Resi(C)) for i > 1, i ∈ N.

(iv) The set Res∞(C) =
⋃∞
i=0 Res(C) is called the resolution closure of C.

Resolution is sound (i.e., the resolvent evaluates to True, when the original clauses
both evaluate to True) and not complete (e.g., c′ = {X1, X2} is True if c = {X1}
is True, but c′ cannot be derived by resolution). Note that BCP corresponds to an
iterative application of unit propagation.

Note that Resi(C) ⊆ Resi+1(C) for i ∈ N. Since there are only finitely many
clauses using the variables in Var(C), there exists an index j ∈ N such that Resj(C) =
Resj+1(C), i.e. Res∞(C) = Resj(C).

The next proposition is well-known and tell us that resolvents can be added to the
initial formula without modifying the set of models (see Claim (a)) and that the resolu-
tion closure can be used to determine the (un)satisfiability of a CNF formula (see Claim
(b)). The proof can be found in [27, Sect. 4.1].

Proposition 2.25. Let C be a finite set of clauses.
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(a) Let r be the resolvent of two clauses c1, c2 ∈ C. Then C is equivalent to C ∪{r}. In
particular, we have S(C) = S(C ∪ {r}).

(b) We have S(C) = ∅ if only if ∅ ∈ Res∞(C).

Because BCP takes almost all the running time of a SAT solver, it is a very important
routine of SAT solvers. Its main task is to find new unit clauses and to detect a contradic-
tion. We state a procedure for BCP under a given partial assignment in Algorithm 2.4.
In the algorithm, we use C|D∪D′ for the Boolean formula obtained by the substitution
of two distinct (i.e. containing different logical variables) partial assignments D and D′

into a set of clauses C.

Algorithm 2.4 BCP (Boolean Constraint Propagation)

Input: A set of clauses C in the logical variables X1, . . . , Xn, a partial assignment D
of the logical variables X1, . . . , Xn.

Output: A partial assignment D′ of the logical variables X1, . . . , Xn such that C|D |=
C|D′ and a Boolean value a. If a = False, then S(C|D) = ∅.

1: Let D′ be the empty assignment.
2: while {L} is a unit clause in C|D∪D′ for some literal L do
3: if L is positive then
4: Append the assignment Var(L) 7→ 1 to D′.
5: else
6: Append the assignment Var(L) 7→ 0 to D′.
7: end if
8: end while
9: if C|D∪D′ contains the empty clause then

10: return (D′, False)
11: else
12: return (D′, True)
13: end if

An example of a run of Algorithm 2.4 is given below.

Example 2.26. Let C = {c1, c2, c3} be the set of clauses with c1 = {X1, X4}, c2 =
{X̄1, X2, X4} and c3 = {X1, X3, X4}. Consider the partial assignment D given byX4 7→
0. Algorithm 2.4 detects that the clause c1 = {X1, X4} becomes a unit clause in C|D,
i.e. we initialize D′ by the assignment X1 7→ 1. It continues with the clause c2 =
{X̄1, X2, X4} and adds X2 7→ 1 to D′. Note that the clause c3 = {X1, X3, X4} is
satisfied by D ∪ D′, and hence it is not considered. Thus the algorithm returns the
partial assignment D′ given by X1 7→ 1, X2 7→ 1. 4

Note that Algorithm 2.4 can be rewritten such that the set of clauses C is being
modified during the assignments into C. However, we prefer the version given above
because it is closer to the real implementation of SAT solvers, e.g. the input clauses are
never modified, etc.
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Next we present the famous Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
and its subroutines. They help us to understand the modern data structures used
in SAT solvers. The DPLL algorithm is a depth-first search procedure. The DPLL
algorithm makes decisions, i.e. it chooses an assignment for a variable and propagates
it using BCP.

The order of decisions is very important, and it is stored in special data structures
called decision stacks. (For the definition of an assignment and underlying notations,
see Definition 2.17.)

Definition 2.27. (a) A decision stack D is defined as a two-dimensional tuple of
assignments of logical variables, i.e. D = (D0, . . . , Ds) where Di is a tuple which
contains assignments of logical variables for i = 1, . . . , s. We write the tuple Di as
Di = (Xi1 7→ ai1 , . . . , Xij 7→ aij ) with ai1 , . . . , aij ∈ {0, 1}.

(b) In the setting of (a), the position of the tuple Di in D (i.e. the index i) is called the
decision level of Di.

(c) Let C be a set of clauses, and let D = (D0, . . . , Ds) be a decision stack. The set of
clauses C|D denotes the set of clauses C|α where the partial assignment α is defined
by all assignments of the variables in

⋃s
i=0Di.

Notice that the indexing of the tuples in D starts from 0. As usual for stacks, the two
main operations for the decision stacks are insertions of a new tuple at the top of the
stack and removals of the latest tuple inserted into the stack.

Before we introduce a framework for DPLL algorithms, we describe its very important
subroutine for chronological backtracking (e.g., see [17, Sect. 3.6.1]) in Algorithm 2.5. The
idea of the algorithm is to backtrack to the last branch of the decision tree from which
the search space has not been explored for both values of a logical variable.

The set A in Algorithm 2.5 contains a history of some decisions which were made in
the main DPLL routine such that we can keep track of which variables were toggled.
The Boolean value d is False if and only if the decision stack is empty.

Now we are ready to describe a framework for DPLL in Algorithm 2.6.

In Algorithm 2.6, an assignment of a variable in Step 10 is called a decision. The
Boolean value b encodes the fact whether a decision has to be made in the next iteration
of the DPLL procedure. The assignments derived using BCP (i.e. using Algorithm 2.4)
are called implied assignments.

Note that Algorithm 2.6 does not perform a vanilla brute search, i.e. it does not search
through all decisions with a subsequent verification if the current assignment satisfies
the formula, but it uses logical consequences of BCP to prune the search space. This
additional feature does not change the fact that the DPLL algorithm is finite and correct.

Let us illustrate the synergy of the subroutines of DPLL in the following examples.
Example 2.28 is the modified Example 3.2 in [102].
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Algorithm 2.5 Chro-Backtrack (Chronological Backtracking)

Input: A set A of assignments of the logical variables X1, . . . , Xn. A decision stack D
which consists of s+ 1 tuples.

Output: An updated decision stack D′, a Boolean value d.

1: D′ := D
2: Let Yi 7→ ai denote the first assignment of a variable in the tuple T where T is

located at position i in D′ for i = 1, . . . , s where Yi ∈ {X1, . . . , Xn}.
3: for k = s, . . . , 0 do
4: if k = 0 then
5: s′ := 0
6: break
7: else if Yk 7→ āk is not contained in A then
8: s′ := k
9: break

10: end if
11: end for
12: if s′ = 0 then
13: return (D′, False)
14: else
15: Remove the tuples at positions s′, . . . , s from D′.
16: A := A \ {Ys′+1 7→ as′+1, . . . , Ys 7→ as, Ys′+1 7→ ās′+1, . . . , Ys 7→ ās}
17: Append the tuple (Ys′ 7→ ās′) to D′.
18: A := A ∪ {Ys′ 7→ ās′}
19: return (D′, True)
20: end if

Example 2.28. Consider the following clauses.

c1 = {X̄1, X2}
c2 = {X̄1, X3, X9}
c3 = {X̄2, X̄3, X4}
c4 = {X̄4, X5, X10}
c5 = {X̄4, X6, X11}
c6 = {X̄5, X̄6}
c7 = {X1, X7, X̄12}
c8 = {X1, X8}
c9 = {X̄7, X̄8, X̄13}
c10 = {X̄14}
c11 = {X14, X15}

Assume that the decisions are as follows (in order of appearance) X9 7→ 0, X10 7→ 0,
X11 7→ 0, X12 7→ 1, X13 7→ 1, X1 7→ 1. After each decision is made, we run BCP to
derive implied assignments. The corresponding decision stack D is given below.

27



Chapter 2 Background

Algorithm 2.6 DPLL (The DPLL Algorithm)

Input: A set of clauses C in n logical variables X1, . . . , Xn.
Output: A decision stack which contains a satisfying assignment in S(C) if #S(C) > 0;

False otherwise.
Require: Algorithms 2.4 and 2.5.

1: (D′, a) := BCP(C, ∅) where ∅ denotes the empty assignment
2: if a = False then
3: return False

4: end if
5: D := (D′)
6: A := ∅
7: b := True

8: while D does not contain a complete assignment of the variables X1, . . . , Xn do
9: if b = True then

10: Choose a logical variable Xi ∈ Var(C) which is not assigned in D and a Boolean value
v ∈ {0, 1}.

11: Append the tuple (Xi 7→ v) to D
12: A := A ∪ {Xi 7→ v}
13: end if
14: b := True

15: (D′, a) := BCP(C,D)
16: Append the assignments in D′ to the end of the last tuple in D.
17: if a = False then
18: (D, d) := Chro-Backtrack(A,D).
19: b := False

20: if d = False then
21: return False

22: end if
23: end if
24: end while
25: return D

decision level decision implied assignments

0 X14 7→ 0, X15 7→ 1
1 X9 7→ 0
2 X10 7→ 0
3 X11 7→ 0
4 X12 7→ 1
5 X13 7→ 1
6 X1 7→ 1 X2 7→ 1, X3 7→ 1, X4 7→ 1, X5 7→ 1, X6 7→ 1, X6 7→ 0

We can see that these decisions yield a contradiction at decision level 6. 4

Let us continue with Example 2.28 and apply Algorithm 2.5 as described in Algo-
rithm 2.6.
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Example 2.29. In the setting of Example 2.28, we assume that A = {X9 7→ 0, X10 7→ 0,
X11 7→ 0, X12 7→ 1, X12 7→ 0, X13 7→ 1, X13 7→ 0, X1 7→ 1, X1 7→ 0}. Algorithm 2.5
backtracks to the following decision stack.

decision level decision implied assignments

0 X14 7→ 0, X15 7→ 1
1 X9 7→ 0
2 X10 7→ 0
3 X11 7→ 1

The set A is updated to A = {X9 7→ 0, X10 7→ 0, X11 7→ 0, X11 7→ 1}. 4

Most modern SAT solvers are based on a conflict-driven conflict-learning (CDCL)
procedure, i.e. on DPLL with the addition of clause learning. A conflict means that a
certain partial assignment yields a contradiction. In the following we mention only the
basic ideas of CDCL which we will use in the later chapters. For a detailed background
on CDCL solvers, see [17, Ch. 4]. The CDCL solvers generate new clauses, called learned
clauses, that guide the computation. Together with non-chronological backtracking and
highly optimized data structures, they are very powerful tools. Two standard imple-
mentations of the SAT algorithm in a CDCL way are MiniSAT [41] and Glucose [6].

Let us explain the main differences to the DPLL procedure given in Algorithm 2.6.
We start with new subroutines used in CDCL, namely, a procedure for learning new
clauses and for non-chronological backtracking. Let C be the input set of clauses.

• Conflict analysis. This function is called whenever a contradiction is discovered by
BCP under the current assignment. During this stage, the conflict is analyzed, and
a new set of so-called learned clauses C ′ with C |= C ′ is appended to C. (Note that
in practise the learned clauses are stored in a separate database and not directly
appended to the input clauses.) The clauses in C ′ should encode the reason why
the conflict has happened and prevent the same conflict conditions. Typically, it
holds that C `res C ′, i.e. the learned clauses are derived using resolution.

• Non-chronological backtracking. This function replaces Chro-Backtrack. The
function analyzes the learned clauses and computes the backtrack point, i.e. to
which point in the run of the CDCL algorithm we return and which assignment of
a variable is flipped. In contrast to chronological backtracking in Algorithm 2.5,
we are able to backtrack to a higher level in the search tree.

The tight integration of the above functions is the key of the success of modern SAT
solvers. Without going into the details, we illustrate the synergy of the two functions in
an example using the most common strategy for learning based on resolution and first
unique implication points (1UIP, see [17, Sect. 3.6.4.]).

Example 2.30. In the setting of Example 2.28, we discovered that the clause c6 yields
a contradiction at the decision level 6. We recall the decision stack at that point of time.
But this time we write the clause that became a unit in parentheses.
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decision level decision implied assignments

0 X14 7→ 0 (c10), X15 7→ 1 (c11)
1 X9 7→ 0
2 X10 7→ 0
3 X11 7→ 0
4 X12 7→ 1
5 X13 7→ 1
6 X1 7→ 1 X2 7→ 1 (c1), X3 7→ 1 (c2), X4 7→ 1 (c3), X5 7→ 1 (c4),

X6 7→ 1 (c5), X6 7→ 0 (c6)

The conflicting clause is c6. The key observation is that the literals in c6 are comple-
mentary to the assignments in the decision stack. Moreover, we kept track of the clauses
that contains the complementary literals. This means we can resolve the literals until we
get a clause only with decision literals (i.e. the literals that contain variables appearing
in the decisions). It turns out (empirically) that we can terminate the resolution chain
earlier, and we get a better quality clause.

The idea is to resolve c6 sequentially until we reach the 1UIP, i.e. the resolvent contains
only one variable in the assignments in the decision stack at the most current decision,
i.e. in our case one variable in the decision stack at level 6. We give the decision levels
of the variables for each literal after the symbol “@”.

Let us start resolving on X6. The resolvent of c6 and c5 is equal to r1 = {X̄4@6, X̄5@6,
X11@3}, which is not a UIP. We go on with X5. Resolving r1 with c4 yields the clause
r2 = {X̄4@6, X10@2, X11@3}, which is the 1UIP and thus the learned clause. The
learned clause r2 is then appended to the input clauses. The set of models remains the
same because of Proposition 2.25.

Next we backtrack to the highest level (excluding the current level) appearing in the
learned clause, i.e. to level 3. The idea behind the 1UIP strategy is that the assignment
X4 7→ 0 is immediately set by BCP after backtracking because of r2. Now the decision
stack looks as follows.

decision level decision implied assignments

0 X14 7→ 0, X15 7→ 1
1 X9 7→ 0
2 X10 7→ 0
3 X11 7→ 0 X4 7→ 0

4

Note that in the previous example we skipped the whole subtree in the search tree in
contrast to the chronological backtracking in DPLL. Thus the finiteness and correctness
are more difficult to prove and require a richer notation. The learned clause corresponds
to a cut in the implication graph in which vertices are the assignments in the decision
stack, and edges represent which clause caused its UP. For more details, see [102].

The effectiveness of modern CDCL SAT solvers is based on the following ingredients.
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• Preprocessing and inprocessing. The goal of a preprocessing is to reduce the for-
mula size and decide if the formula is trivially (un)satisfiable. For instance, BCP
can be run before the first decision as in Algorithm 2.6. For another example
of preprocessing, see [40]. To add more reasoning to search, various inprocessing
techniques are used, e.g. see [52].

• Restarts. Random restarts may help the solver to jump into a different part of
the search tree, and hence deep “useless” areas in the search tree can be avoided.
Note that the SAT solver does not throw away the learned clauses.

• Unlearning. Too many learned clauses slow down BCP. Hence various clause dele-
tion strategies are used to reduce the number of learned clauses. The input clauses
are never removed.

• Heuristics. Branching heuristics, i.e. rules for deciding which assignments to
choose, influence the running time of a SAT solver a lot. Therefore they are a
very important ingredient of CDCL solvers. For instance, variable state indepen-
dent decaying sum (VSIDS) is such heuristics. It turns out that it is very important
that the branching heuristic is cheap. For further details, see [17, Ch. 7] or [16].

• Efficient data structures. In a run of CDCL it is very important to identify con-
tradictions and unit clauses. The evaluation does not have to be done by assigning
all literals in a clause c whenever the SAT solver assigns variables in Var(c). In
contrast, we may apply lazy data structures, such as watched literals, which help
to identify conflicting and unit clauses in a very effective way. For further details,
see [17, Sect. 4.5.1].

2.5 SMT and Programmatic SAT

Real-world logic problems are often expressed in some “richer” logic theory rather than
propositional logic. The problem of deciding the satisfiability of propositional formulas
with respect to some background theory is called satisfiability modulo theory (SMT). A
formal introduction to SMT requires a heavy portion of notations and definitions that
we will not need (see [102] or [17, Ch. 26]). Instead, we mention the basic principles of
SMT without going into details.

For the whole section we fix some decidable (i.e. there is an effective method for
determining membership of formulas in the theory) formal theory T , and we always
assume that a formula in (the signature of) the theory T (so-called T -formula) is given
in CNF, i.e. as a conjunction of disjunctions of atoms. Moreover, we restrict our attention
to the satisfiability of quantifier-free formulae.

In the following examples we give formulas in the theory of linear arithmetics on the
integers (TLAI) and in the theory of fixed-width bit vectors (TBV). For further details,
we refer to [102, Sect. 4.2].

Example 2.31. (a) The formula ϕ = (X1 < X2)∧
(
(X1 ≤ 0)∨(X2 < X3)

)
∧
(
(X1 < X3)

∨ (X3 ≤ 0)
)

is a TLAI-formula in CNF.
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(b) Let n = 32. Consider the standard bitwise XOR and AND operations on the bit vectors
of n bits. The formula ϕ = (X1⊕X2⊕X3 = X4)∧(X1∧X3 = X2) is a TBV-formula
in CNF. 4

Boolean abstraction of a T -formula ϕ in CNF is a Boolean formula in CNF where the
atoms of ϕ are substituted by new Boolean variables.

Example 2.32. In the setting of Example 2.31(a), the Boolean abstraction of the TLAI-
formula ϕ is equal to Y1 ∧ (Y2 ∨ Y3) ∧ (Y4 ∨ Y5), where Y1, . . . , Y5 are new Boolean
variables. 4

There are two approaches how to decide satisfiability of T -formulae.

• Eager approach. A T -formula is converted into an equisatisfiable CNF, i.e. the
models of the two formulas are preserved, and a SAT solver is invoked. In the
setting of TBV and hardware circuits, this approach is called bit blasting. On one
hand, no special solver has to be tailored for the theory T . On the other hand,
such direct CNF encodings can be quite inefficient for SAT solving and not very
“readable”. For further details, see [17, Sect. 26.3].

• Lazy approach. The initial T -formula is abstracted to a Boolean CNF formula.
The Boolean abstraction is then fed to a SAT solver, which cooperates with a
theory solver for T (so-called T -solver). The T -solver examines the model of the
Boolean abstraction that was obtained from the SAT solver and tries to deduce
a model for the T -formula. If the model of the Boolean abstraction cannot be
extended to a model of the T -formula, the T -solver can provide the SAT solver a
reason for this inconsistent assignment. For further details, see [17, Sect. 26.4].

The lazy approach is often implemented as DPLL(T ), where the theory solver is
used in a DPLL-based algorithm. A simple framework for DPLL(T ) is presented in
Algorithm 2.7. The algorithm is a simplified version of [17, Fig. 26.3]. Note that DPLL

is used as an enumerator for models of C.

Notice that a DPLL solver is “blind” and cannot see the meaning of the literals
appearing in the abstraction. In more sophisticated implementation of DPLL(T ) the
theory solver may be integrated tighter with the SAT solver than in Algorithm 2.7,
e.g. the theory solver can help the SAT solver to choose the branching variables, it
provides reasons why no models are found in Step 3, etc. We give an example of a run
of Algorithm 2.7 where we illustrate the simple blocking mechanism.

Example 2.33. In the setting of Example 2.31(a) and Example 2.32, we have the TLAI-
formula ϕ = (X1 < X2) ∧ (X1 ≤ 0 ∨X2 < X3) ∧ (X1 < X3 ∨X3 ≤ 0) and its Boolean
abstraction ψ = Y1 ∧ (Y2 ∨ Y3)∧ (Y4 ∨ Y5). Consider the model a = (1, 0, 1, 0, 1) ∈ S(ψ).
Note that the assignment a is not compatible with a valid assignment of atoms in ϕ
because X1 < X2 and X2 < X3 imply X1 < X3. Thus we add the blocking clause
c = {Ȳ1, Y2, Ȳ3, Y4, Ȳ5}. 4
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Algorithm 2.7 DPLL-T (Framework for Lazy SMT Solving)

Input: A T -formula ϕ in CNF.
Output: A model for ϕ if one exists, UNSAT otherwise.
Require: A T -solver TSolver, a DPLL-based solver DPLL such as Algorithm 2.6.

1: Let C be a set of clauses corresponding to the Boolean abstraction of ϕ.
2: while DPLL(C) returns a model a do
3: if there exists a model A for ϕ derived from a using TSolver then
4: return A
5: else
6: Let c be a clause that blocks the assignment a.
7: C := C ∪ {c}
8: end if
9: end while

10: return UNSAT

Addition of blocking clauses such as in Example 2.33 alone is not very efficient. We
can do the learning phase in TSolver in a more sophisticated way and learn the true
core for the conflict. The shorter the new clause is, the better the SAT solver performs.

Example 2.34. In Example 2.33, the clause c relates 5 variables Y1, . . . , Y5, but the
conflicting pieces were only Y1, Y3, Y4. Moreover, the model a′ = (1, 1, 1, 0, 1) leads to
the same conflict, and it is not blocked by adding c. We can encode the true core of the
conflict, i.e. that the implications X1 < X2 and X2 < X3 imply X1 < X3, into the new
clause c′ = {Ȳ1, Ȳ3, Y4}. 4

One of the biggest drawbacks of lazy SMT solving is the necessity of implementing
theory solvers for various logical theories. In practise, it is sometimes sufficient to
integrate only “small pieces” of a theory into SAT solvers. One solution for such quick
enhancements is called programmatic SAT solving.

We call a CDCL SAT solver programmatic if it is augmented with the callback functions
that allow the user to add extra functionality to its propagation and conflict analysis
routines. The callback function is called after each decision of the SAT solver. Pro-
grammatic SAT solving was introduced in [44], and it is in fact a variation of DPLL(T ),
which differs from the DPLL(T ) concept in the following ways.

• The theory solver in the context of programmatic SAT can be an arbitrary piece of
code written in a programming language such as C++ that implements the callback
function. We remark that no special requirements on the code are required.

• The callback function is particularized to every input of the solver. That is, un-
like the T -solver in DPLL(T ) which remains invariant for all formulas from the
language of T , the callback functions added via the programmatic interface are
specific and unique to each input.
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• The interface of the programmatic SAT solvers is much simpler than that of the
SMT solvers. Hence, programmatic solvers are more flexible and tend to be more
user-friendly.

Programmatic SAT solving allows easy customization of the SAT solver to specific
Boolean problems. The SAT developer thus has more control over the power of a SAT
solver. This architecture has also been found useful for solving various problems coming
from combinatorics (see [23] or [24]).

2.6 An Overview of Other Solving Techniques

In this section we mention other methods than can be applied to solve the problem PSS
or SAT (after a suitable conversion). Even though the section does not contain a complete
list by far, it provides some useful references to other research areas. We do not write
down all basic definitions that are required for understanding the new methods. The
only exception is the following definition from the theory of CSP (constraint satisfaction
problems) because it makes the notion of a “constraint” precise.

Definition 2.35. (a) A CSP problem is defined as a triple (X,D,C), where

• X is a set of variables, i.e. X = {x1, . . . , xn}.
• D is a set of domains of X, i.e. D = {Dx1 , . . . , Dxn} where the set Dxi is the

domain of the variable xi.

• C is a set of constraints. Every constraint c ∈ C is a tuple c = (Xc, Rc)
where Xc = {xi1 , . . . , xis} ⊂ X is a set of variables, and Rc is a relation
Rc ⊆ Dxi1

× · · · ×Dxis .

(b) In the setting of (a), let c = (Xc, Rc) ∈ C be a constraint with Xc = {xi1 , . . . , xis} ⊆
X. We say that an assignment xi1 7→ ai1 , . . . , xis 7→ ais with aij ∈ Dxij

satisfies

the constraint c if (ai1 , . . . , ais) ∈ Rc.

Some other solving methods that have not been mentioned (and will not be considered
in this doctoral thesis) are given in the following list.

• CSP solving. Roughly speaking, SAT or SMT can be seen as a subset of CSP. Thus
CSP solvers (i.e. the solver that solves CSPs) have a variety of applications. They
implement various techniques for maintaining local consistency, backjumping, or
constraint learning. For further details, see [98].

• Brute-force search. We can consider CDCL SAT solvers as tools for a “clever”
brute-force search over CNF. There exists brute-force search algorithms over ANF
with a clever evaluation mechanism such as the tool libFES [21]. Moreover, there
exist algebraic techniques such as one in [81] that gain an exponential speedup
over the vanilla brute-force approach, even though its idea is based on a brute-
force search as well. However, the result in [81] seems to be interesting only for
theoretical studies because of its asymptotic nature.
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• Combinatorial approaches. The approach is based on the following observation.
Given a set of sparse Boolean polynomials S in ANF, it is easy to compute Z(f)
for f ∈ S. To get the set of common zeros Z(S), the individual sets of zeros Z(f)
for f ∈ S have to be “glued” together. Various gluing algorithms can be found
in [103].

• IP/MILP. One can encode a problem in a set of linear inequalities. If the coef-
ficients of the inequalities are real numbers, the solution can be found in polyno-
mial time. However, in our setting the coefficients of the inequalities are typically
defined over Z or 0/1. Such instances are dealt with in the theories of Integer
Programming (IP), Mixed Integer Linear Programming (MILP), etc. (see [86]).

2.7 Block Ciphers and Hash Functions

In this section we look into how to encode various Boolean functions in ANF and CNF.
In particular, we focus on cryptographic functions that are implemented in hardware
(such as logic circuits or chips), and we provide a high-level description of iterated block
ciphers and iterated hash functions. Other functions (e.g. non-cryptographic, software-
based, etc.) can be encoded in a similar way. The section is not meant to be a complete
description of cryptographic primitives with their security requirements. Instead, we
rather analyze a few interesting cases. For more cryptographic background, we refer
to [108].

Hardware implementations have to satisfy a lot of conditions that are required by the
customers and integrated circuit manufacturers. For instance, the complexity of an in-
tegrated circuit corresponds to the silicon area that is used, and thus corresponds to the
cost of the circuit. That is why the complexity of the circuit is reduced by using simple
transformations that are applied multiple times during the evaluation. In the next ex-
ample, we give an overview of iterated block ciphers based on substitution–permutation
networks, where the above reduction is clear.

Example 2.36. A block cipher is a Boolean map E : Fm2 × Fn2 → Fn2 mapping a m-bit
key k and a n-bit plaintext p to a n-bit ciphertext c. For an iterated cipher, subkeys
(also called round keys) k1, . . . , kr ∈ Fn2 are derived from the main key k. This key
generation phase is called the key schedule (also called the key expansion) of the cipher.
The workflow of an iterated cipher is given below.

k → k1 → k2 → . . . → kr
↓ ↓ ↓

p→ Round 1
a2−→ Round 2

a3−→ . . .
ar−→ Round r → c

The round keys are applied in the round functions. A round function is a function
Fn2 × Fn2 → Fn2 mapping the round key ki and an intermediate state ai to an updated
state ai+1. (We set a1 = p and ar+1 = c.)

A typical round function in a substitution-permutation network is given below. (The
order of the operations may differ.)
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ki
↓

ai → + → Sub → Perm → ai+1

The round function is a composition of key-dependent transformations such as bit-
wise XOR, a non-linear layer (substitution; very often realized by S-Boxes), and a linear
layer (realized by a permutation). 4

Of course, the resulting encryption has to be bijective for any choice of keys such that
decryption is possible. Typical examples of the design outlined in Example 2.36 are
AES [36], Serpent [18], and lightweight ciphers (i.e. with even smaller circuit complexity)
LED [49] or PRESENT [19]. Different security aspects are considered when dealt with
symmetric cryptosystems. The key is supposed to be private. The other parts such as
the plaintext, the ciphertext, the key schedule and a complete specification of the cipher
are public. (Sometimes the plaintext is unknown as well.) For instance, the key recovery
attack is defined as follows.

Problem: Key recovery (KEY)
Input: An encryption function E : A×B → B,

ciphertext-plaintext pairs (p1, c1), . . . , (pk, ck) ∈ B ×B.
Question: Find a key k ∈ A with E(k, pi) = ci for i = 1, . . . , k.

The ciphertext-plaintext pairs in the problem KEY may be chosen by an attacker. In
that case, we speak of a chosen-plaintext attack.

The concept of iteration can be also found in (unkeyed) hash functions.

Example 2.37. A compression function is a Boolean function Fk+t2 → Fk2 where t ∈ N+.
The compression function is used to hash a binary string of arbitrary length in an
iterative way. Consider a message m ∈ Fn2 for which we would like to compute the hash
h. In the preprocessing, the message m is padded with additional bits using an injective
padding function such that the length of the padded message m′ is a multiple of t. Then
m′ is divided into bit string m1, . . . ,mr of length t. The workflow of an iterated hash
function is given below.

m→ m1 → m2 → . . . → mr

↓ ↓ ↓
IV→ Compress

a2−→ Compress
a3−→ . . .

ar−→ Compress → h

The compression function takes mi ∈ Ft2 and ai ∈ Fk2 as inputs and compresses the
concatenation of mi and ai to ai+1. (We have a1 = IV with an initialization vector
IV∈ Fk2 and ar+1 = h.) 4

Typical hash functions that share their design with Example 2.37 are MD5 [97], SHA-1
or SHA-2 [39]. Security requirements of hash functions are specified by the difficulty of
inverting the hash function or finding collisions. The specification of the compression
function as well as the computed hash are public. The corresponding message may or
may not be public. For instance, the preimage attack is defined as follows.
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Problem: Preimage (PREIMAGE)
Input: A hash function H : A→ B and its digest h ∈ B.
Question: Find a message m ∈ A with H(m) = h.

If the problem PREIMAGE cannot be solved efficiently for a hash function H, then H
is said to be preimage resistant.

Now we focus on how to encode such iterative Boolean functions into CNF or ANF.
However, the same procedure can be applied to any Boolean map such as one repre-
senting multiplier circuits (see [68]). In order to encode a Boolean function of the above
types, we proceed as follows.

(1) Identify the basic functions (e.g. in round functions, in compresson functions, etc.).

(2) Find ANF (or CNF) encodings of the basic functions in (a).

(3) Introduce additional indeterminates (or logical variables) for intermediate states
representing the input and output states of the basic functions.

(4) Connect the output variables of the preceding transformation with the input vari-
ables of the next transformation.

Step (1) is usually very easy and follows from the specification of the cryptographic
algorithm. By Propositions 2.12 and 2.18, we know that ANF or CNF representations
exist for any Boolean function (or for any Boolean map). However, the representation of
the whole transformation is often not feasible without introducing new auxiliary variables
in Step (3). Thus Steps (1)–(4) naturally reflect the workflow of the underlying hardware
implementation.

There are two main approaches how to implement Step (2). Let ϕ be a Boolean map.
Firstly, we can encode the equation in an explicit way as y = ϕ(x) mapping the input
variables x to the output variables y. Secondly, we may find an implicit function ψ(x, y)
such that the relation is satisfied if and only if ϕ(x) = y. Implicit ANF encodings usually
have lower degrees than explicit ones.

Of course, the quality of the encodings matters. In the case of an ANF encoding,
one can use the interpolation algorithm in [73, Thm. 6.3.10, Cor. 6.3.11], known as the
Buchberger-Möller algorithm, that outputs already a Gröbner basis. In the case of a
CNF encoding, Tseitin transformations or logic minimizers such as Espresso [99] may
come in handy. There exist also hardware compilers that are able to convert a gate-level
description into a CNF representation which use various minimization tricks which make
it likely that the output CNF aids the SAT solvers.

To conclude this section, we encode a (not secure) toy cipher in ANF.

Example 2.38. Consider the encryption E : F2
2 × F2

2 → F2
2 given by the following

diagram.

(k1, k2) (k3, k4)
↓ ↓

(p1, p2) → ⊕ (a1,a2)−−−−−→ S
(a3,a4)−−−−−→ P

(a5,a6)−−−−−→ ⊕ → (c1, c2)
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where ⊕ is component-wise XOR, and S : F2
2 → F2

2 is the function defined by the
following table.

(x1, x2) S(x1, x2)

(0, 0) (0, 1)
(1, 0) (0, 1)
(0, 1) (1, 1)
(1, 1) (0, 0)

The function P : F2
2 → F2

2 is defined by

P

(
x1
x2

)
=

(
0 1
1 1

)
·
(
x1
x2

)
+

(
0
1

)
The function S can be represented by two Boolean polynomials s1 = x1x2 + x2 and

s2 = x1x2 + 1 in B2, i.e. we have S(x1, x2) = (x1x2 + x2, x1x2 + 1). We also have
P (x1, x2) = (x2, x1 +x2 + 1). Now we encode the transformation step by step. We start
with the leftmost XOR and get Boolean polynomials f1, f2. Then we encode S in f3, f4.

f1 = a1 + p1 + k1 f3 = a3 + a1a2 + a2
f2 = a2 + p2 + k2 f4 = a4 + a1a2 + 1

Next we encode the functions P in f5, f6. Finally, we encode the final XOR in f7, f8.

f5 = a5 + a4 f7 = c1 + a5 + k3
f6 = a6 + a3 + a4 + 1 f8 = c2 + a6 + k4

Altogether, the set of Boolean polynomials {f1, . . . , f8} in the indeterminates p1, p2, c1, c2,
k1, . . . , k4, a1, . . . , a6 is an algebraic representation of the encryption process. 4

2.8 Cryptanalysis and Fault Attacks

If an ANF or a CNF description of a cryptographic primitive is provided (such as
in Example 2.38), it is fairly easy to mount an algebraic attack on the primitive. The
details of such attacks are given in the next examples.

Example 2.39. Consider the problem KEY for an encryption function E. Find an
encoding of the relation E(k, p) = c in ANF (or in CNF). If the values p and c are
known, substitute them into the encoding. Recovering the secret key k, and thus solving
KEY, is nothing more than determining the set of zeros of the corresponding Boolean
system (or the set of satisfying assignments of the corresponding CNF formula). 4

Example 2.40. Consider the problem PREIMAGE for a hash function H. Find an
encoding of the relation H(m) = h in ANF (or in CNF). Substitute the value h in the
encoding. Finding a corresponding message m′, and thus solving PREIMAGE, is nothing
more than determining the set of zeros of the corresponding Boolean system (or the set
of satisfying assignments of the corresponding CNF formula). 4
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Strong cryptographic algorithms are designed in a way such that algebraic attacks,
i.e. solving underlying Boolean systems or sets of clauses, are not feasible. However, if
additional constraints are obtained, the attack may be successful. We describe a way
how to construct such constraints by manipulating hardware implementations.

A fault attack is a special kind of side-channel attack where the attacker has access
to the (hardware) implementation of the function and is able to intentionally inject
physical disturbances during the operation. Fault attacks are very often realized by
differential fault analysis (DFA) where the fault-free and the fault-affected calculations
are compared. The fault corresponds to a difference in an intermediate state. The attack
is conducted by symbolically propagating this difference towards the circuit outputs,
which are known to the attacker.

Fault attacks can be divided into various subcategories regarding the following criteria
which depend on the capabilities of the attacker and the hardware implementation itself.

• Targets. E.g., an application-specific integrated circuit that realizes a cipher or a
hash function, a microprocessor that runs cryptographic software, etc.

• Means of physical fault-injections. E.g., low-cost methods like glitching or over-
heating vs. high-effort techniques such as electromagnetic or laser-based fault-
injection which are more accurate.

• Numbers of required faults. The more faults are required to be injected by an
attacker, the less applicable is the attack in practise.

• Temporal accuracy. This criterion reflects how accurate is the attacker w.r.t. the
time progression, e.g. if it is possible to determine which part of the algorithm is
currently carried out.

• Spacial accuracy. This criterion reflects how accurate is the attacker’s knowledge
about in which register or memory cells a certain intermediate state of the com-
putation is stored.

• Complexity of mathematical analysis. The analysis is usually carried out by solving
a set of constraints and checking a list of candidates. This step highly depends on
the other criteria.

• Total cost. An estimation how much the attack costs (in terms of hardware, time,
etc.).

A usual way how to apply faults attacks is to add so-called fault equations which
describe the fault propagation to an instance created in a vanilla algebraic attack. (This
approach is explained below in Example 2.41.) The addition of the fault equations
should help a solver to find a solution. On one hand, one can manually taylor “ad-
hoc” fault equations for a given cipher (e.g., see [112], [65]). On the other hand, there
exist approaches, so-called algebraic fault attacks (AFA), where the fault equations are
constructed in an automatic way. The later approaches benefit from the fact that more
complicated fault relations can be generated than by a human-design approach.
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In the next examples we provide a high-level description of an AFA on an iterative
block cipher. Similar attacks can be launched on other cryptographic primitives that
are based on iterative designs. In the first scenario, we extend an algebraic attack by
fault equations derived from the last rounds.

Example 2.41. The following diagram depicts an iterative block cipher under an alge-
braic fault attack. The first faulty-free encryption (i.e. p 7→ c) corresponds to a vanilla
algebraic attack. A fault is injected in the second encryption (i.e. p 7→ c′) two rounds
“before the end”, i.e. in the state a′r−1. The fault injection in the diagram is indicated
by the lightning bolt. The key schedule is the same for both calculations.

p→ Round 1
a2−→ . . .

ar−1−−−→ Round r − 1
ar−→ Round r → c

↑ ↑ ↑
k → k1 → . . . → kr−1 → kr

↓ ↓ ↓

p→ Round 1
a2−→ . . .

a′r−1−−−→ Round r − 1
a′r−→ Round r → c′

E

The entire fault-free encryption (i.e. p 7→ c) and the last two round of the faulty
encryption (i.e. a′r−1 7→ c′) are encoded in ANF (or in CNF). Moreover, we may add
special restrictions on the fault such as ar−1⊕a′r−1 = δ where the bit string δ is partially
known, or wH(ar−1⊕ a′r−1) ≤ d where wH denotes the Hamming weight and d ∈ N. We
solve the whole instance for the unique keys kr−1 and kr. By undoing the (bijective)
key-schedule we obtain the unique key k. 4

In the second scenario, we consider encoding only of the last rounds.

Example 2.42. In the setting of Example 2.41 consider the following diagram.

p→ Round 1
a2−→ . . .

ar−1−−−→ Round r − 1
ar−→ Round r → c

↑ ↑ ↑
k → k1 → . . . → kr−1 → kr

↓ ↓ ↓

p→ Round 1
a2−→ . . .

a′r−1−−−→ Round r − 1
a′r−→ Round r → c′

E

In contrast to Example 2.41, we encode only the last rounds for each encryption, i.e.
we encode ar−1 7→ c of the fault-free encryption and a′r−1 7→ c′ of the faulty encryption.
Again, we may add some extra constraints on the fault as mentioned in Example 2.41.
Solving the instance gives us the set of possible candidates for (kr−1, kr). For each can-
didate we undo the key-schedule and verify if the obtained key is correct. Of course, we
can iterate the attack with various fault locations and obtain more restrictive constraints
for the key candidates. 4

Although real fault injections are done on hardware devices, in this thesis we are
simulating the fault injection in software, i.e. we model fault injections by XORing random
values to the intermediate state words.
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Chapter 3

The Boolean Border Basis Algorithm

Motivation From the theoretic point of view, border bases are motivated from seeking
vector space bases of P/I where I is a zero-dimensional ideal in a polynomial ring P . If
such a basis forms an order ideal O, and a set of polynomials G ⊂ P has a special shape
(namely, we have Supp(G) ⊆ O ∪ ∂O, and exactly one term in Supp(g) for g ∈ G is
contained in ∂O), the set G is said to be an O-border basis of I. Hence any polynomial
with the support “outside” the border ∂O can be rewritten using G to a polynomial
with the support completely in O.

The Border Basis Algorithm (BBA) computes border bases that corresponds to special
order ideals. (Later we shall see that such border bases generalize Gröbner bases.) The
BBA is an iterative algorithm where an initial set of polynomials V ⊂ P is updated in
every iteration. The philosophy of the BBA can be outlined as follows.

• Keep the degree under control. Given a set of intermediate polynomials V ⊂ P , we
form only linear syzygies xkfi+x`fj in P with fi, fj ∈ V during the algorithm, i.e.,
the degree is increased at most by one in one step. The newly derived polynomials
are then appended to V and thus used for creating new linear syzygies.

• Use linear algebra. The goal of computing the linear syzygies is to cancel leading
terms. The BBA uses linear LTσ-interreductions of the intermediate polynomials
and thus relies on linear algebra algorithms.

• Keep the support under control. We limit the growth of the support of the poly-
nomials in V by a mechanism based on an order ideal U . Simply speaking, if the
support of a polynomial in V is not contained in U , it is not used further in form-
ing the linear syzygies. Thus Supp(V ) contains at most #(U ∪ x1U ∪ · · · ∪ xnU)
different terms in each iteration. The universe U is enlarged carefully during the
BBA.

Notice that the BBA overcomes some problems of the Gröbner basis algorithm (GBA,
see Algorithm 2.1). Namely, the degree is not increased so greatly as during the GBA
(recall that the GBA uses fundamental syzygies, i.e. S-polynomials), and only the linear
reductions are used in the BBA, unlike the normal remainder reductions in the GBA.

In order to aply the theory of border bases to various benchmarks coming from com-
puter science, border bases over Boolean polynomials become important. This motivates
us to introduce Boolean border bases and the Boolean Border Basis Algorithm (BBBA)
in this chapter. Moreover, we mention details on how to implement the BBBA in C++.

Related work From the historical point of view, first remarks how to compute such
bases were given in [83]. A complete description follows in [70]. However, the order
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ideals in [70] are restricted to a special form and depend on a term ordering. For a
computation of border bases that do not depend on any term ordering, we refer the
reader to [67]. The characterizations of border bases was given in [69]. The Boolean
version of border bases was introduced in [58]. Since then, there have been attempts to
generalize various improvements of GBA such as signature techniques (see [93]) to BBA.
Some results in this direction are given in [59]. The only non-high-level implementation
of the BBA known to the author is the one in ApCoCoA [109]. The first implementation of
BBBA was given in [58]. This implementation in [58] that adopted the basic reasoning
about Boolean polynomials to the BBA has been improved successively in [53, 55, 59].
This chapter is based on [53,55,58,59].

Structure and contents The structure of this chapter is as follows. The definition of
border bases and the BBA is recalled in Sect. 3.1 and 3.2. These sections contain a high-
level translation of the BBA to the Boolean case. In the rest of the chapter we refine the
BBBA described in Sect. 3.2 and provide various details and improvements such that
the resulting description does not contain any gaps. To implement the Boolean BBA
efficiently, we have to find suitable data structures for squarefree terms, order ideals and
Boolean polynomials. Order ideals are discussed in Sect. 3.3, and linear interreductions
are studied in Sect. 3.4 together with some implementation details in Sect. 3.5. Having
described the main parts separately in the previous sections, we are able to restructure
the BBBA in Sect. 3.6 such that the resulting description is very close to the actual
C++ implementation. In Sect. 3.7 we outline possible improvements of the BBBA. In
Sect. 3.8 we conclude the chapter with some timings which illustrate the feasibility of
different versions of the BBBA, and we compare our implementation to other methods.

3.1 Border Bases

We start this section with recalling the general concept of border bases. In the fol-
lowing we let K be a field and P = K[x1, . . . , xn] a polynomial ring over K. One of the
basic ideas of border bases is to find vector space bases of P/I that form order ideals.
The following type of systems of generators of I allow us to rewrite all polynomials in
terms of an order ideal O.

Definition 3.1. Let O = {t1, . . . , tµ} be an order ideal, and let ∂O = {b1, . . . , bν} be
its border.

(a) A set of polynomials G = {g1, . . . , gν} is called an O-border prebasis if gj =
bj −

∑µ
i=1 cij ti with c1j , . . . , cµj ∈ K for j = 1, . . . , ν.

(b) An O-border prebasis G ⊂ I is called an O-border basis of I if the residue classes
O = {t1 + I, . . . , tµ + I} in P/I form a K-basis of P/I.

In the setting of (a) and (b), we sometimes say that the polynomial gj is the border
basis element of G which corresponds to the border term bj . We recall some useful
facts about border bases in the following proposition. The proofs can be found in [73,
Sect. 6.4].
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3.1 Border Bases

Proposition 3.2. Let O be an order ideal in Tn, let I ⊂ P be a zero-dimensional ideal.

(a) Assume that the residue classes of the elements of O form a K-vector space basis of
P/I. Then there exists a unique O-border basis of I.

(b) Let G be an O-border basis of I. Then we have I = 〈G〉 and P = I ⊕ 〈O〉K .

It is natural to ask whether the order ideals satisfying the condition in Claim (a) exist
for any zero-dimensional ideal I. The answer is yes, and the order ideal is given by
Oσ(I) = Tn \LTσ(I). This gives us one way of constructing an O-border basis, namely,
we can extend a Gröbner basis as in Example 3.3.

Example 3.3. Let I be a zero-dimensional ideal in P . Choose a term ordering σ,
compute the reduced σ-Gröbner basis G of I, let Oσ(I) = Tn\LTσ(I) = {t1, . . . , tµ}, and
let ∂Oσ(I) = {b1, . . . , bν}. Then the set G′ = {g1, . . . , gν}, where gj = bj − NFG(bj) for
j = 1, . . . , ν, is an Oσ(I)-border basis of I which contains G (see [73, Prop. 6.4.18]). 4

Conversely, every Oσ(I)-border basis of I contains reduced σ-Gröbner basis of I. Thus
Oσ(I)-border bases are actually extensions of Gröbner bases because the order ideals
are restricted to a special form (cf. [58, Ex. 2.3]). However, not every border basis is
constructed by extending a reduced Gröbner basis, as the next example shows.

Example 3.4. Let K = Q, let P = K[x1, x2], and let I = 〈x21+x1x2+1, x22+2x1x2+1〉.
Then O = {1, x1, x2, x1x2} is an order ideal and the residue classes of the terms in O
form a K-basis of P/I. Notice that this order ideal is not of the form Tn \ LTσ(I) for
any term ordering σ, since x1x2 ∈ LTσ(I) for both cases x1 >σ x2 and x2 >σ x1. This
order ideal has its border equal to ∂O = {x21, x21x2, x22x1, x22}. In this setting the set
{x21 + x1x2 + 1, x21x2 + x1 − x2, x1x22 − x1 + 2x2, x

2
2 + 2x1x2 + 1} is an O-border basis

of I which is not constructed from a Gröbner basis as in Example 3.3. 4

Next we introduce the definition of a BooleanO-border basis. As usual for the Boolean
case, we let K = F2, P = F2[x1, . . . , xn], and F = 〈x21 +x1, . . . , x

2
n +xn〉. A border basis

of an ideal I in P which contains the field ideal has the following shape.

Proposition 3.5. Let O be an order ideal in Tn, and let I be an ideal in P which
contains the field ideal F and has an O-border basis.

(a) We have O ⊂ Sn and a disjoint union ∂O = (∂O) sf ∪ x1O1 ∪ · · · ∪ xnOn, where Oi
is the set of all terms in O divisible by xi.

(b) For i ∈ {1, . . . , n} and t ∈ Oi, the border basis element corresponding to xi t is
xi t+ t.

Proof. To prove (a), it suffices to prove the first claim. If a term in O is not squarefree,
it is of the form x2i t with t ∈ O. But then O is not linearly independent modulo I, since
x2i t+ xit is in I. To prove (b), we observe that the polynomial xi t+ t is a multiple of
x2i + xi and hence in I. This implies the claim.
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Chapter 3 The Boolean Border Basis Algorithm

In other words, Claim (b) tell us that the border basis elements corresponding to
∂O \ (∂O) sf are trivial. This fact and Proposition 2.12 motivates us to the following
definition.

Definition 3.6. Let P = F2[x1, . . . , xn], let O = {t1, . . . , tµ} be an order ideal in Sn.
Let I ⊆ P be an ideal which contains the field ideal F = 〈x21 + x1, . . . , x

2
n + xn〉.

(a) A set of polynomials G ⊂ P is called a Boolean O-border prebasis if G is O-
border prebasis.

(b) A Boolean O-border prebasis G ⊂ I is called a Boolean O-border basis of I if G
is an O-border basis of I.

(c) Let G be a Boolean O-border basis of I. A subset G′ ⊂ G in ANF is called a short
Boolean O-border basis of I if G′ contains all border basis elements in G which
correspond to the terms in (∂O) sf .

Let us see an example of an order ideal O and an O-border basis G which is not
constructed from a Gröbner basis such that the ideal I = 〈G〉 contains the field ideal.

Example 3.7. In the polynomial ring P = F2[x1, x2, x3, x4], consider the ideal I =
〈x2x4+x3x4+1, x1x3+x1x2+1, x1x3x4〉+F where F = 〈x21+x1, x

2
2+x2, x

2
3+x3, x

2
4+x4〉

is the field ideal. Then one can check that I has a border basis for the order ideal O =
{1, x1, x2, x3, x4, x1x2, x2x3, x3x4, x1x4}. This border basis is not constructed from a
Gröbner basis, since x2x3 >σ x3x4 and x1x3 >σ x1x2 cannot hold simultaneously. 4

3.2 The Border Basis Algorithms

In this section we present a high-level description of the BBA and the BBBA. As
usual, P denotes a polynomial ring over the field K in the indeterminates x1, . . . , xn.
Let us start the section with the following useful notation.

Definition 3.8. For a set of polynomials V ⊂ P , we let V + = V ∪ x1V ∪ · · · ∪ xnV .
This operation is called the plus extension of V .

Note that we use this notation even in the case when V is a set of terms or a vector
subspace of P . In the BBA, the plus extension is used to enlarge a set of polynomials
until a stable span is reached.

Definition 3.9. Let U be a set of terms in Tn, and let V be a set of polynomials in
P . Let L = 〈U〉K and A = 〈V 〉K . Define the following vector subspaces inductively as
follows A0 = A and Ai+1 = A+

i ∩ L for i ∈ N. The union A∞ =
⋃∞
i=0Ai is called the

L-stable span of A.

Note that if the set V is LTσ-interreduced, it holds
(
〈V 〉K

)+
= 〈V +〉K . Now we are

ready to present the BBA in Algorithm 3.1.
The loop in Steps 4 – 12 of the algorithm computes the 〈U〉K-stable span of 〈V 〉K

(see [70, Prop. 13]. The condition ∂O ⊂ Uold is very important (see [70, Prop. 16]
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Algorithm 3.1 BBA (The Border Basis Algorithm)

Input: Generators {f1, . . . , fs} of a zero-dimensional ideal I and a term ordering σ.
Output: The Oσ(I)-border basis of I.
Require: The algorithm FinalReduction for extracting the border basis from the last

stable span described in [70, Prop. 17].

1: Let U = 〈Supp(f1) ∪ · · · ∪ Supp(fs)〉OI.
2: Let V be an LTσ-interreduced basis of 〈f1, . . . , fs〉K .
3: repeat
4: repeat
5: Compute a set of polynomials W ′ such that V ∪W ′ is an LTσ-interreduced basis

of 〈V +〉K .
6: repeat
7: W := {w ∈W ′ | LTσ(w) ∈ U}
8: U ′ := 〈

⋃
w∈W Supp(w) \ U〉OI

9: U := U ∪ U ′
10: until U ′ = ∅
11: V := V ∪W
12: until W = ∅
13: O := U \ 〈LTσ(V )〉
14: Let Uold := U and U := U+.
15: until ∂O ⊂ Uold

16: Apply FinalReduction(V,O) and return the result.

and ensures that such a border basis exists. The algorithm FinalReduction has a
low time complexity and will be ignored in the following. Notice that we used already
the improved version of the BBA described in [70, Prop. 21]. The order ideal U in
this algorithm is called the (computational) universe. Since we are performing linear
algebra operations in the vector space 〈U+〉K , our goal is to keep it as small as possible
at all times. For further details on this algorithm, we refer the reader to [70].

In the rest o the section, we translate the BBA to its Boolean version in a rather
straightforward way, i.e. we let K = F2, P = F2[x1, . . . , xn], and F = 〈x21 + x1, . . . ,
x2n + xn〉. While computing a border basis of an ideal containing the field ideal F , we
can restrict everything to polynomials having only squarefree terms in their supports.
To emphasize that the plus extension is done in the ring of Boolean polynomials Bn,
we use the brackets around the plus symbol, i.e., V (+) = V ∪ x1V ∪ · · · ∪ xnV in Bn.
Similarly, for t, t′ ∈ Sn, we let t · t′ be the product of t and t′ followed by reduction
modulo the field ideal F . For a polynomial f ∈ P , the normal form NFF (f) is obtained
by replacing each term in Supp(f) by its squarefree part. Putting these facts into the
BBA in Algorithm 3.1, we get the following Boolean version in Algorithm 3.2.

Notice that, during the course of this algorithm, we always have U ⊂ Sn and V ⊂
〈Sn〉F2 . Since Tn contains

(
n+d−1

d

)
terms of degree d, while Sn contains only

(
n
d

)
terms

of degree d, the universe and the resulting border basis will typically be much smaller
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Algorithm 3.2 BBBA (The Boolean Border Basis Algorithm)

Input: Generators {f1, . . . , fs} of an ideal I that contain the field ideal F and a term
ordering σ.

Output: A short Boolean Oσ(I)-border basis of I.
Require: The algorithm FinalReduction for extracting the border basis from the last

stable span described in [70, Prop. 17].

1: Let U = 〈Supp(NFF (f1)) ∪ · · · ∪ Supp(NFF (fs))〉OI.
2: Let V be an LTσ-interreduced K-vector space basis of 〈NFF (f1), . . . ,NFF (fs)〉K .
3: repeat
4: repeat
5: Compute a set of polynomials W ′ such that V ∪W ′ is an LT-interreduced basis

of 〈V (+)〉K .
6: repeat
7: W := {w ∈W ′ | LTσ(w) ∈ U}
8: U ′ := 〈

⋃
w∈W Supp(w) \ U〉OI

9: U := U ∪ U ′
10: until U ′ = ∅
11: V := V ∪W
12: until W = ∅
13: O := U \ LTσ(V )
14: Let Uold := U and U := U (+).
15: until ∂O sf ⊂ Uold

16: Apply FinalReduction(V,O) and return the result.

for the Boolean BBA in comparison to the BBA.

3.3 Squarefree Terms and Their Order Ideals

The motivation for the next sections is to turn the high-level description given in
Algorithm 3.2 into more exact instructions such that the new description is closer to
the actual implementation. In this section, we look at the problem of implementing
order ideals in Sn and the necessary order ideal operations efficiently. We start with
representations of squarefree terms. There are two main operations that have to be
considered.

(T1) Multiplication of a term by a term.

(T2) Deciding whether a term is divisible by a term.

Let t = xα1
1 · · ·xαn

n ∈ Sn be a squarefree term, i.e. αi ∈ {0, 1} for i = 1, . . . , n. We
have two options how to implement terms and operations (T1), (T2):

• The term t can be implemented in the dense representation via the bittuple
α = (α1, . . . , αn). The multiplication of terms t · t′ in Sn, i.e., multiplication
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3.3 Squarefree Terms and Their Order Ideals

and subsequent reduction modulo the field ideal, can then be implemented via OR

of the bittuples. Specifically, multiplication of t by an indeterminate xi is nothing
but an OR with 1 in the i-th position. Similarly, a term t with an exponent vector α
divides a term t′ with an exponent vector α′ if and only if (α AND α′) = α holds.

• On the other hand, we can use a sparse representation, i.e. it suffices to store the
sorted indices of the indeterminates appearing in the term. Multiplying t by an
indeterminate xi computed modulo x2i + xi is implemented as inserting the index
i into sorted array if i did not appear in the representation (in the correct position
in order to preserve the sorted array). A term t ∈ Sn divides a term t′ ∈ Sn if the
indices in the representation of t are contained in the representation of t′.

The following example provide the difference between the two representations.

Example 3.10. Let t = x1x8 be a term in S10. Then t is represented as (1, 0, 0, 0, 0, 0, 0,
1, 0, 0) in the dense way and by (1, 8) in the sparse way. 4

In practically relevant cases we may have a bound on the maximal degree of the terms
that are used at some time during the computation. If the maximum degree is d, and we
have n = 2k indeterminates, the sparse representation requires at most dk bits. In our
setting, we usually have a large number of indeterminates, while the maximum degree
is typically below 8. Thus we have dk � 2k = n, and the sparse representation is thus
more memory efficient and convenient for our purposes.

Let us give concrete implementation details of the squarefree terms. A squarefree term
t = xi1 · · ·xik ∈ Sn with 1 ≤ i1 < · · · < ik ≤ n can be implemented in the sparse way as
the sorted array of uint t̃ = (i1, . . . , ik). The arrays are allocated length d ∈ N. The
number d corresponds to the maximal degree occurring in the run of the algorithm, and
it has to be determined before the run of the algorithm. Typically, d is set according
to the amount of RAM memory available on a computer. To give a sense of scale, the
maximal degree does not exceed 8 for the examples of quadratic systems in [46]. Thus
we use only terms in Sn with degree at most d. This set is denoted by Sn≤d.

The squarefree terms are ordered by a degree compatible term ordering σ because the
BBBA is a degree-by-degree algorithm (see Definition 3.8). Moreover, we can rearrange
the indeterminates according to how frequently they appear in the input, where x1 is
the most frequent. The rearrangements can speed up the BBBA in some cases.

The terms used in the algorithm are mapped to numbers such that these numbers
reflect the term ordering σ.

Definition 3.11. Let σ be a term ordering. The unique bijective map ψσ,d : Sn≤d →
{1, . . . ,#Sn≤d} ⊆ N with the property ψσ(t) ≤ ψσ(t′) if and only if t ≤σ t′ for t, t′ ∈ Sn≤d
is called the numbering of terms in Sn≤d induced by σ.

To illustrate the definition, we give the following example.

Example 3.12. Using σ = DegLex, d = 2 and n = 2, the map ψσ,d defined by 1 7→ 1,
x2 7→ 2, x1 7→ 3, x1x2 7→ 4 is a numbering of terms in Sn≤d induced by σ. 4
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To implement order ideals in Sn (such as the universe U) efficiently, we represent
them by their cogenerators (see Definition 2.3). Clearly, an arbitrary set of cogenerators
can be transformed to a minimal one by removing multiples iteratively. Every set of
cogenerators contains a unique minimal one. We shall represent order ideals by their
unique minimal set of cogenerators. Thus, after every order ideal operation, we minimize
the resulting set of cogenerators.

We consider the following order ideal operations and functions.

(O1) Membership of a term in an order ideal in Sn.

(O2) Computing U (+) for an order ideal U in Sn.

(O3) Calculating U \LTσ(V ) for an order ideal U ⊂ Sn and a set of polynomials V ⊂ Bn.

(O4) Determining whether (∂O) sf ⊆ U for order ideals O and U in Sn.

(O1) can be checked by testing if the term divides one of the cogenerators. The order
ideal membership problem is decided by Algorithm 3.3. Its proof of correctness follows
immediately from the definition of cogenerators.

Algorithm 3.3 IsInOI (Order Ideal Membership Test)

Input: The minimal set of cogenerators C of an order ideal O in Sn, t ∈ Sn.
Output: True if t ∈ O, False otherwise.

1: a := False

2: foreach c in C do
3: if t divides c then
4: a := True

5: end if
6: end foreach
7: return a

The computation of (O2) is straightforward, since it suffices to take the union of the
sets of cogenerators of U , x1U , . . . , xnU , and to minimize. The following proposition
shows how we can calculate cogenerators of an order ideal minus a monomial ideal.
Altogether, we solve (O3).

Proposition 3.13. Let U be an order ideal in Tn, let C be a set of cogenerators of U ,
and let t ∈ U . Define the set D = { t′xi | i ∈ {1, . . . , n}, t

′ ∈ C, t divides t′, and xi
divides t′}. Then (C ∪D) \ 〈t〉 is a set of cogenerators of the order ideal U \ 〈t〉.

Proof. Let u ∈ U \ 〈t〉. Then u divides a cogenerator t′ ∈ C. If t′ is not a multiple of t,
the claim is trivially true. If t′ is a multiple of t, then u is a proper divisor of t′ and
hence a divisor of one of the terms t′

xi
in D.

Notice that we can replace the condition that “xi divides t′” in the definition of D by
“xi divides t” if U ⊂ Sn. We present Algorithm 3.5 (and its subroutine Algorithm 3.4)
for computing the minimal set of cogenerators of an order ideal minus a monomial ideal.
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The remaining task (O4), namely checking whether (∂O) sf is contained in U , is dealt
with by the following proposition.

Proposition 3.14. Let U be an order ideal in Sn, let O be an order ideal contained
in U , let C be the minimal set of cogenerators of O, and let D = x1C ∪ · · · ∪xnC. Then
we have (∂O) sf ⊆ U if and only if D ⊆ U .

Proof. Clearly, the terms in D are contained in O or in (∂O) sf , and therefore in U .
Conversely, assume that D ⊆ U . Every term t ∈ (∂O) sf is of the form t = xit

′ with
i ∈ {1, . . . , n} and t′ ∈ O. Thus there exists a cogenerator u ∈ C such that u = t′t′′ for
some t′′ ∈ Sn. Now the claim follows from t′′ t = xi · u ∈ D ⊆ U and the fact that U is
an order ideal.

Notice that it is more complicated to compute the border of O itself. We have to
multiply the cogenerators of O by indeterminates and consider all factors of the resulting
squarefree terms in D. Since we do not need this method in Proposition 3.14, we merely
indicate it by an example.

Example 3.15. In S3 we consider O = {1, x1, x3, x1x3}, i.e. we have O = 〈x1x3〉OI.
By multiplying the cogenerator x1x3 with indeterminates, we get one squarefree border
term, namely x1x2x3. Now the divisors of this term provide the squarefree border
(∂O) sf = {x2, x3, x1x2, x2x3, x1x2x3}. 4

The test provided by Proposition 3.14 is easy to implement. Terms in the set D
are produced by sequentially flipping zeros to ones in the exponents of the terms of C.
Furthermore, in applications such as algebraic attacks, we usually end up with a very
small order ideal. Therefore the final computation of the border is much less expensive
than the computation of the borders of the intermediate order ideals O would be. Algo-
rithm 3.6 decides if the squarefree border of one order ideal is contained in some other
order ideal.

3.4 Linear Interreduction for Boolean Polynomials

Linear interreduction is a very important ingredient of the BBA. Hence, before moving
to a restructured version of the BBBA, we discuss linear interreduction of Boolean
polynomials. For a better understanding of linear LTσ-interreduction, we formulate the
following definitions which are analogous to the rewriting rules in the Gröbner basis
theory (see [72, Def. 2.2.1]).

Definition 3.16. Let V ⊆ Bn, and let b, r, b′ ∈ Bn.

(a) We say that b linearly LTσ-reduces to b′ in one step using r if LTσ(b) = LTσ(r)
and b′ = a+ r. We write b

r−→ b′.
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Algorithm 3.4 OIminusTerm (Order Ideal Minus a Monomial Ideal Generated by a Term)

Input: A term t ∈ Sn, the minimal set of cogenerators C of an order ideal O in Sn.
Output: The minimal set of cogenerators of the order ideal O \ 〈t〉.

1: D := ∅
2: foreach c in C do
3: if t divides c then
4: for i = 1 to n do
5: if xi divides t then
6: D := D ∪ { cxi }
7: end if
8: end for
9: end if

10: end foreach
11: Let A be the set of the minimal elements in (C ∪D) \ 〈t〉 w.r.t. division.
12: return A

Algorithm 3.5 OIminusMI (Order Ideal Minus a Monomial Ideal)

Input: The minimal set of cogenerators C ′ of an order ideal U in Sn, a set of squarefree
terms T .

Output: The minimal set of cogenerators C of the order ideal U \ 〈T 〉.
Require: Algorithm 3.4.

1: C := C ′

2: foreach t in T do
3: if t ∈ 〈C ′〉OI then
4: C :=OIminusTerm(t, C)
5: end if
6: end foreach
7: return C

(b) We say that b linearly LTσ-reduces to b′ using V if there exist vi ∈ V for i =

1, . . . , k and b1, . . . , bk−1 ∈ Bn such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→ b′. We write

b
V−→ b′.

(c) A polynomial b with the property that there is no r ∈ V such that b
r−→ b′ for some

b′ ∈ Bn is called linearly LTσ-irreducible with respect to V .

Obviously, we have b
b−→ 0 for any polynomial b. The following example shows us that

the result of a sequence of linear LTσ-reductions is not uniquely determined in general.

Example 3.17. Let V = {x1x2 + 1, x1x2, x1 + 1} ⊆ B2. Then x1x2 + x1
x1x2+1−−−−−→

x1 + 1
x1+1−−−→ 0, and thus x1x2 +x1

V−→ 0. On the other hand, x1x2 +x1
x1x2−−−→ x1

x1+1−−−→ 1,

and thus x1x2 + x1
V−→ 1. 4
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Algorithm 3.6 CheckBorder (Checking the Border)

Input: Cogenerators C ′ of an order ideal U in Sn, cogenerators D of an order ideal O
in Sn.

Output: True if (∂O) sf ⊆ U , False otherwise; a set of squarefree terms C such that
〈C〉OI = 〈C ′ ∪ (∂O) sf〉OI.

1: a := True

2: B := ∅
3: foreach d in D do
4: for i = 1 to n do
5: d′ := xid
6: if d′ ∈ Sn and d′ /∈ 〈C ′〉OI then
7: B := B ∪ {d′}
8: a := False

9: end if
10: end for
11: end foreach
12: Let C be the set of the minimal elements in (C ′ ∪B) w.r.t. division.
13: return (a,C)

If we would like to have unique linear LTσ-reducers (and hence unique linear LTσ-
reductions), the set V has to be linearly LTσ-interreduced.

Proposition 3.18. Let V be a linearly LTσ-interreduced set of Boolean polynomials.

Let b, b′ ∈ Bn such that b
V−→ b′. Then the polynomial b′ is uniquely determined.

Proof. There exists exactly one element v1 ∈ V such that LTσ(b) = LTσ(v1), because
the leading terms of the elements of V are pairwise distinct. Let b1 = b − v1. We have
b

v1−→ b1. There exists at most one element v2 ∈ V such that LTσ(b1) = LTσ(v2). If
there is no such v2, the element b1 is the unique linear LTσ-reduction of b. Otherwise,
we continue with b2 = b1 − v2 in the same way, and the result follows by induction.

The following proposition gives us another useful property of a linearly LTσ-inter-
reduced set of Boolean polynomials.

Proposition 3.19. Let V be a linearly LTσ-interreduced set of Boolean polynomials,

and let b, r ∈ Bn. Then we have b
V−→ 0 if and only if b ∈ 〈V 〉F2.

Proof. First we prove “⇒”. By definition, there exist v1, . . . , vk ∈ V and bi ∈ Bn for

i = 1, . . . , k−1 such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→ 0. Hence we get b = v1 + · · ·+vk
in Bn, and henceforth b ∈ 〈V 〉F2 .

Conversely, let b = v1 + · · · + vk for some pairwise distinct elements v1, . . . , vk in
V . Because V is linearly LTσ-interreduced, there exists a unique index i1 ∈ N with

1 ≤ i1 ≤ k such that LTσ(vi1) = LTσ(b). Hence b
vi1−−→ (b − vi1). There exists a

unique i2 ∈ N with 1 ≤ i2 ≤ k such that LTσ(vi2) = LTσ(b − vi1). By induction, we
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create a zero linear LTσ-reduction chain starting from b and having linear LTσ-reducers
vi1 , . . . , vik ∈ V .

The above proposition does not hold for sets of Boolean polynomials that are not
LTσ-interreduced. We illustrate this fact in the next example.

Example 3.20. Let V = {x1x2+x1, x1x2+x2} ⊆ B2. We can see that x1+x2 ∈ 〈V 〉F2 ,
but x1 + x2 is linearly LTσ-irreducible with respect to V . 4

We are now ready to introduce and analyze Algorithm 3.7 for computing successive
extensions of linearly LTσ-interreduced sets. Algorithm 3.7 will be applied in Algo-
rithm 3.10 in the next section.

Algorithm 3.7 Reduce (Extension of Linearly LTσ-Interreduced Set)

Input: A non-zero Boolean polynomial b′, a linearly LTσ-interreduced set of Boolean
polynomials V ′, and a degree compatible term ordering σ.

Output: A set V ⊆ Bn such that V is linearly LTσ-interreduced and 〈V 〉F2 = 〈V ′ ∪
{b′}〉F2 .

1: b := b′, V := V ′

2: while there exists r ∈ V with LTσ(r) = LTσ(b) do
3: b := b+ r
4: end while
5: if b 6= 0 then
6: V := V ∪ {b}
7: end if
8: return V

Proposition 3.21. Algorithm 3.7 returns a linearly LTσ-interreduced list V such that
〈V 〉F2 = 〈V ′ ∪ {b′}〉F2 holds.

Proof. In Step 2 we search for a unique polynomial in V ′ which has the same leading
term as b. If such a polynomial does not exist, the polynomial b is appended to V in
Step 6.

The linear LTσ-reduction chain is constructed in Steps 2–4. If b′
V ′−→ 0, then b′ ∈

〈V ′〉F2 ⊆ 〈V 〉F2 by Proposition 3.19. If we have b′
V ′−→ b 6= 0, then we have b′ ∈ V by

Step 6.

3.5 Implementation of Boolean Polynomials and Linear
Interreduction

After dealing with the combinatorial part of the Boolean BBA, we now turn to the
implementation of polynomials and polynomial linear algebra. Clearly, this is the true
core of the algorithm and needs to be optimized the most.
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A set of polynomials V can be represented by a coefficient matrix whose columns are
labeled with the terms in the support of V (see Definition 2.7). Moreover, the columns
are sorted w.r.t. a term ordering σ. This is particularly useful, because the Boolean BBA
is at its core a linear algebra algorithm for which the computation of the basis extension
is the most demanding task. In our case, the matrices are Boolean, i.e. they consist of
0, 1. We consider the following tasks, when implementing systems of polynomials.

(P1) Multiplying a Boolean polynomial by an indeterminate.

(P2) Addition of two Boolean polynomials.

(P3) Appending a new Boolean polynomial f to a set of Boolean polynomials V . (Note
that Supp(f) may contain new terms that are not involved in Supp(V ).)

(P4) Linear LTσ-interreducing of a set of Boolean polynomials.

Again, there are two options how to implement coefficient matrices.

• The dense representation of a matrix contains all coefficients of the matrix.

• The sparse representation of a matrix contains only positions of non-zero entries
of the matrix.

The following example provides the difference of the two representations.

Example 3.22. Let t1, . . . , t5 be terms in Sn such that t1 >σ t2 >σ · · · >σ t5 w.r.t. some
term ordering σ. The following dense matrix represents the polynomials f1, . . . , f5 ∈ Bn.

t1 t2 t3 t4 t5


1 1 1 1 1 ↔ f1 = t1 + t2 + t3 + t4 + t5
0 1 0 0 1 ↔ f2 = t2 + t5
0 0 1 0 1 ↔ f3 = t3 + t5
0 0 0 1 1 ↔ f4 = t4 + t5
0 0 0 0 1 ↔ f5 = t5

The sparse representation w.r.t. the tuple of terms (t1, . . . , t5) is given below

(1, 2, 3, 4, 5) ↔ f1 = t1 + t2 + t3 + t4 + t5
(2, 5) ↔ f2 = t2 + t5
(3, 5) ↔ f3 = t3 + t5
(4, 5) ↔ f4 = t4 + t5
(5) ↔ f5 = t5

4

Let us describe an approach that we chosed in our C++ implementation. A Boolean
polynomial g = t1+ · · ·+ tk, where t1 <σ t2 <σ · · · <σ tk are terms in Sn≤d, is represented
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as a vector<int128 t> via g̃ =
(
ψσ,d(t1), . . . , ψσ,d(tk)

)
∈ Nk, where ψσ,d is the num-

bering of terms induced by σ (see Definition 3.11). Note that we can choose a different
map instead of ψσ,d, but then accessing the leading term would have linear complexity
instead of the constant one.

Example 3.23. Using ψσ,d from Example 3.12, we represent g = 1 + x2 + x1x2 ∈ B2 as
the vector g̃ = (1, 2, 4). 4

First of all, we look at (P1). Multiplication of g by an indeterminate xi in Bn is
done by translating g̃ back to terms in the support of g via ψ−1σ,d and handled there.
The result is then converted back using ψσ,d. These conversions do not slow down the
overall performance according to our profiling. Moreover, the conversions are cached.
The BBBA spends more than 95% in addition of two Boolean polynomials (P2), and
this is very fast in this representation, namely only a symmetric difference of two sorted
vectors.

Example 3.24. Using ψσ,d from Example 3.12, we represent f = 1 + x2 + x1x2 ∈ B2

as the vector f̃ = (1, 2, 4) and g = 1 + x1 + x1x2 ∈ B2 as g̃ = (1, 3, 4). The sum
f + g = x2 + x1 in B2 corresponds to (2, 3). 4

A system of Boolean polynomials V is implemented as a vector<SparseRow> Ṽ , where
the inner collections represent individual Boolean polynomials. At this point, we may
remark that the numbering of terms from Definition 3.11 can be alternatively defined
only for the terms appearing in the system, and hence the representation would consist
of smaller numbers. However, the representation of the entire system would have to be
rewritten every time when a new term is introduced. In our case, the operation (P3) is
very straight-forward. Remark that our relative sparse representation is efficient. E.g.,
in the dense representation, the coefficient matrix has to be dynamic, because we add
new rows and new columns during the computation of V (+). Moreover, when we add a
new column, i.e., when we introduce a new term, the resulting columns must be ordered
via the term ordering from the biggest to the smallest term.

The operation (P4) is based on Gaußian elimination (GE) of the coefficient matrix,
more precisely, on computing a row echelon form (REF) of the matrix. In the BBBA
we consider a special problem of computing a REF, because we need to know the per-
mutation of the rows (if some swapping has occurred), and many pivot positions are
known beforehand. In fact, we are really computing a REF extension. The reducers are
cached on-the-fly such that the polynomial that has the same leading term as a given
polynomial is easily accessible. This idea is captured in the next definition.

Definition 3.25. Let V ⊆ Bn be an LTσ-interreduced set of Boolean polynomials. A
map % : Sn → V ∪ {�} such that

%(t) =

{
v ∈ V if there exists v ∈ V with LTσ(v) = t,

� otherwise.

holds for t ∈ Sn is called a map of reducers of V .
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It has turned out that GE without swapping rows, and optimized to minimize the
writing all over the matrix, is the most suitable among different variants of GE. Let us
compute the extension 〈V 〉F2 ⊆ 〈V (+)〉F2 for a set V ⊂ Bn. We start with the coefficient
matrix CMσ(V ) which is already in REF. Then we append new rows from CMσ(V (+)).
We reduce each of these rows by rows in V . At the end we get either a new pivot, and
we enlarge V , or we get a zero row which we cancel, and we proceed to the next row.
Therefore we read only from V and write only in a single row at each step.

We prefer choosing pivots coming from rows in V . Otherwise, we could eliminate a
row in V by a row in V (+) \ V , and thus obtain a bigger extension than necessary. If
the matrix is in the dense representation, addition of polynomials is nothing but a XOR

of two rows. However, when we use a sparse representation, i.e., when only the non-zero
position in a row are remembered, addition of polynomials results in the symmetric
difference of two lists.

To illustrate how a system is LTσ-interreduced and how Definition 3.25 is used, we
present the following example.

Example 3.26. With the setting of Example 3.12, we want to LTσ-interreduce W =
{f, g, h} with f = 1+x2+x1x2, g = 1+x1+x1x2 and h = 1+x1 in B2. We initialize Ṽ = ∅
and % =

(
1 : � | x1 : � | x2 : � | x1x2 : �

)
. Starting with f , we define Ṽ =

(
(1, 2, 4)

)
and % =

(
1 : � | x1 : � | x2 : � | x1x2 : f

)
. We continue with g as in Example 3.24

and get Ṽ =
(
(1, 2, 4), (2, 3)

)
and % =

(
1 : � | x1 : x2 + x1 | x2 : � | x1x2 : f

)
. Finally,

we reduce h, and we get Ṽ =
(
(1, 2, 4), (2, 3), (1, 2)

)
and % =

(
1 : � | x1 : x2 + x1 |

x2 : 1 + x2 | x1x2 : f
)
. The tuples in Ṽ correspond to the following polynomials

1 + x2 + x1x2, x2 + x1 and 1 + x2. 4

Note that the support and the cogenerators of the universe describes different aspects
of the BBBA. E.g., during the computation of V (+), the support changes, since it is
enlarged via multiplications by indeterminates, but the cogenerators remain untouched.
Conversely, when the universe is enlarged, i.e., the cogenerators are changed, but the
support remains the same.

3.6 The BBBA Refined

Let us recall the idea of the BBBA using the problem of finding the F2-rational
solutions of a Boolean system f1 = · · · = fs = 0. Let V = {f1, . . . , fs} ⊆ Bn. Define
the ideal I that is generated by V and the field ideal. Suppose that the system has a
unique F2-rational solution. (For instance, this is common in the scenario of algebraic
attacks.) We are looking for a set of linear polynomials G ⊆ I such that G is a linearly
LTσ-interreduced basis of 〈G〉F2 and # Supp(G) = #G. Hence the goal is to create new
linearly independent linear polynomials in I and to keep the support of polynomials in
the system as small as possible at the same time.

Given a set of Boolean polynomials V = {f1, . . . , fs}, the BBBA generates new poly-
nomials by forming and linearly LTσ-interreducing V (+) = V ∪ x1V ∪ · · · ∪ xnV . Every
iteration of V (+) is then followed by linear LTσ-interreduction. One could repeat these
two operations in order to obtain the desired basis. However, this approach clearly leads
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to an exponentially large amount of work since all polynomials in V are multiplied by
n indeterminates.

Thus the operation V (+) in the BBBA is restricted by the order ideal U . The universe
U is initially cogeneratored by

⋃
i Supp(fi). The V (+) operation is restricted to the

polynomials that have their support contained in the universe. In this way, the growth
of V and the support of the polynomials in V is lower. The universe is extended by
the support of polynomials that have leading terms contained in U . This extension
of the universe is described in Algorithm 3.8. (This algorithm will be used later in
Algorithm 3.10.) The proof of correctness of Algorithm 3.8 is easy, and it is omitted.

Algorithm 3.8 ExtendU (An Extension of the Universe)

Input: Cogenerators C ′ of an order ideal U in Sn, a linearly LTσ-interreduced set of
Boolean polynomials V .

Output: A set of cogenerators C ⊇ C ′ such that LTσ(f) ∈ 〈C〉OI for f ∈ V implies
that Supp(f) ⊆ 〈C〉OI.

1: C := C ′

2: repeat
3: D := C
4: foreach f in V do
5: if LTσ(f) ∈ 〈C〉OI and f is not contained in 〈C〉OI then
6: Let A be the set of the minimal cogenerators of 〈C ∪ Supp(f)〉OI.
7: C := A
8: end if
9: end foreach

10: until #D = #C
11: return C

The successive computation of V (+) tends to repeat the consideration of multiples
of polynomials that have been already multiplied by all indeterminates. To avoid this
overhead, we introduce the following notion.

Definition 3.27. A Boolean polynomial f ∈ Bn is said to be covered in a linearly

LTσ-interreduced set V ⊆ Bn if xif
V−→ 0 for all i ∈ {1, . . . , n}.

Covered polynomials should be avoided because they do not introduce any new leading
terms. The definition is equivalent to the condition xif ∈ 〈V 〉F2 for i = 1, . . . , n by
Proposition 3.19. Checking the latter condition is quite expensive for large sets V . That
is why we remember the polynomials that have been worked on as in the following
example.

Example 3.28. Let f = x1x2 + 1 ∈ B2 and V ′ = {f} ⊆ B2. Let us compute V ′(+)

iteratively with successive linear LTσ-interreduction. We compute x1f = x1x2 + x1
f−→

x1 + 1 and x2f = x1x2 + x2
f−→ x2 + 1. We get V = {x1x2 + 1, x1 + 1, x2 + 1}. Then f

is covered in V , and therefore multiplication of x1x2 + 1 by indeterminates (once again)
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does not yield new linearly independent polynomials during the computation of V (+).
Thus we remember that the polynomial f is covered in V . 4

Algorithm 3.9 computes {b}(+) for a Boolean polynomial b and immediately linearly
LTσ-reduces the result against the known polynomials in V . To keep the pseudo-code
simple, the covered polynomials that are easily discoverable are stored in the set M ⊆ V .
The proof of correctness of Algorithm 3.9 follows directly from Proposition 3.21.

Algorithm 3.9 PlusAndReduce (Plus Extension and LTσ-Interreduction)

Input: A non-zero Boolean polynomial b, a linearly LTσ-interreduced set of Boolean
polynomials V ′, a degree compatible term ordering σ, cogenerators C of an order
ideal U in Sn, and a set of polynomials M ′ ⊆ V which are covered in V .

Output: A linearly LTσ-interreduced set V such that 〈V ′ ∪ {x1b, . . . , xnb}〉F2 = 〈V 〉F2

if Supp(b) ⊆ 〈C〉OI, V = V ′ otherwise, and a set of covered polynomials M .
Require: Algorithm 3.7

1: V := V ′, M := M ′

2: if b is contained in 〈C〉OI and b /∈M then
3: for i = 1 to n do
4: b′ := xib
5: Update V by calling Reduce(b′, V, σ).
6: end for
7: M := M ∪ {b}
8: end if
9: return (V,M)

Now we are able to describe a restructured version of the BBBA in Algorithm 3.10.
Its subroutine FinalReduction refers to the algorithm in [70, Prop. 17] whose purpose
is to extract the desired border basis from 〈V 〉F2 . Notice that this algorithm can be
easily modified to output only the polynomials having squarefree border terms.

As a pivoting strategy for the reduction process in the algorithm, we consider Boolean
polynomials of the smallest degree and among them the ones having the smallest support,
i.e. we will use the ordering which is given in the next definition.

Definition 3.29. Let f, g ∈ Bn. We write f ≺ g if and only if deg(f) < deg(g), or
deg(f) = deg(g) and # Supp(f) < # Supp(g).

Proposition 3.30. In the setting of Algorithm 3.10, Algorithm 3.10 outputs the Boolean
Oσ(I)-border basis of I.

Proof. It is sufficient to prove that Algorithm 3.10 is equivalent to Algorithm 4.3 in [58].
Let the set Va denote the set of all polynomials in V such that Supp(Va) ⊆ U = 〈C〉OI

where U is the current universe. Note that V may contain polynomials whose supports
are not contained in 〈C〉OI. Thus the set V in Algorithm 4.3 in [58], corresponds to Va.

The only difference in the initialization (apart from defining the new set M) occurs in
Steps 3–5. They are equivalent to linear LTσ-interreducing of the initial generators V .
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Algorithm 3.10 BBBA2 The BBBA (Restructured Version)

Input: A set of polynomials V = {f1, . . . , fs} ⊆ Bn such that V ∪ F generates a 0-
dimensional ideal I and a degree compatible term ordering σ.

Output: A short Boolean Oσ(I)-border basis of I.
Require: Algorithms 3.5, 3.6, 3.7, 3.8, 3.9, FinalReduction.

1: V := ∅,M := ∅
2: Let C be a set of the minimal cogenerators of the order ideal 〈

⋃s
i=1 Supp(fi)〉OI.

3: for i = 1 to s do
4: Update V by calling Reduce(fi, V, σ).
5: end for
6: repeat
7: repeat
8: V ′ := V
9: foreach f chosen in the increasing order according to “≺” in V ′ do

10: Update (V,M) by calling PlusAndReduce(f, V, σ, C,M).
11: end foreach
12: C :=ExtendU(C, V ).
13: until #V = #V ′

14: D :=OIminusMI(C,LTσ(V )).
15: Update (a,C) by calling CheckBorder(C,D).
16: until a = True

17: Apply FinalReduction(V, 〈D〉OI) and return the result.

Now we would like to show that Steps 7–13 computes the 〈C〉OI-stable span of Va, i.e.

that 〈Va〉F2 = 〈V (+)
a 〉F2∩〈U〉F2 holds in Step 14. The inclusion ”⊆” is trivial. Let us look

at the other inclusion. The set M contains polynomials in V such that M (+) ⊆ 〈V 〉F2 ,
so elements in M can be omitted in Algorithm 3.9.

Let U = 〈C〉OI and v ∈ 〈V (+)
a 〉F2 ∩ 〈U〉F2 in Step 14. We know that v

V−→ 0 because

〈V (+)
a 〉F2 ⊆ 〈V 〉F2 after Step 11. This means that v ∈ 〈V 〉F2 by Proposition 3.19 because

V is linearly LTσ-interreduced to zero. We would like to show that v
Va−→ 0, which is

equivalent to v ∈ 〈Va〉F2 . Let v = v1 + · · ·+vk, where {v1, . . . , vk} ⊆ V is a linearly LTσ-
interreduced set. Then LTσ(v) = LTσ(vi) for some 1 ≤ i ≤ k. Since LTσ(vi) = LTσ(v) ∈
U , we get vi ∈ 〈U〉F2 , i.e. vi ∈ Va after Step 12. We continue with the polynomial v− vi,
and we get that {v1, . . . , vk} ⊆ Va by induction.

The loop in Steps 9–11 enlarges V by elements in 〈V (+)
a 〉F2 such that updated V is

linearly LTσ-interreduced. (This is equivalent to Step 5 of Algorithm 4.3 in [58].) Step
12 enlarges the universe in the same way as Steps 6–10 of Algorithm 4.3 in [58] do.

The rest (i.e., Steps 15–17) continues in the same way as Steps 13-16 of Algorithm 4.3
in [58] do.
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3.7 Improvements of the BBBA

In this section we outline possible further directions for improving Algorithm 3.10.
The improvements are listed below.

• Substitutions. The original algorithm can be extended by substituting linear poly-
nomials of the form xi, xi + xj , xi + xj + 1, xi + xj into the derived polynomials,
whenever these special polynomials are found in V . E.g., if xi + xj + 1 with its
leading term xi is found in the ideal, we rewrite all polynomials containing xi
found so far using the rewriting rule xi 7→ xj + 1. Thus we reduce the number of
indeterminates in the system by one.

• Extensions of the universe. Enlarging U by U (+) or by its border may have the
effect that the support of V blows up. The main idea of this improvement is to
extend the universe as little as possible (e.g. see [70, Cor. 23]). Unfortunately,
proving correctness of the BBBA when such approaches are applied remains an
open problem.

• Heuristics. Tackling really hard problems, we may allow ourself to use some heuris-
tics even though the algorithm may become incomplete. For instance, we can relax
the ordering of terms in the coefficient matrix w.r.t. σ (e.g. see [67]). We may use
random decisions in order to select the polynomial for the next reduction. Alter-
natively, we can interreduce only the sparse part of the system, and the dense part
remains inactive, etc.

• Special linear algebra tools. The computation of the basis extension, i.e., the REF
extension, can be implemented in a specialized algorithm rather than standard
or sparse Gaußian elimination (e.g. see [42]). During the elimination some parts
of the coefficient matrix may already be very dense. Therefore a good strategy
should divide the matrix into sparse/dense blocks and deal with them separately
by using specialized libraries.

• Skip useless reductions. The current version of the algorithm may be adapted
to some analogues of Buchberger criteria for the Gröbner basis algorithm (e.g.,
see [93]). Some attempts for the BBA and the BBBA can be found in [59].

In the rest of the section, we outline the main idea how to skip useless reductions
using the signature mechanism described in [59]. Let V = (f1, . . . , fs) ∈ Bsn be the
input Boolean polynomials for the BBBA. A signature bound (according to [59]) for
a polynomial g ∈ Bn is a pair (i, t) ∈ N × Sn which stores the history of the creation
of g during the run of the BBBA. The signature bound indicates that g is some linear
LTσ-reduction of tfi. The signature bound helps us to skip duplicate reductions coming
from the symmetry. The main idea is motivated by the following proposition. However,
the situation in the BBBA is more complicated because we use some polynomials in
reductions whose support may not be contained in the current universe.
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Proposition 3.31. Let V be a linearly LTσ-interreduced set of Boolean polynomials,

and let fk, g, g
′, g′′ ∈ Bn such that xixjfk

V−→ g′ and xjxifk
V−→ g′′. In other words, g′

and g′′ have the signature bounds equal to (k, xixj). Then g′
V−→ 0 if only if g′′

V−→ 0.

Proof. Let us take a look at xixjfk
V−→ g′

V−→ 0. By Proposition 3.19 we get xjxifk =
xixjfk ∈ 〈V 〉F2 . We know that g′′ = xjxifk + v for some v ∈ V . Hence we have

g′′ ∈ 〈V 〉F2 . From Proposition 3.19 follows that g′′
V−→ 0. The opposite direction is

analogous.

The signature bounds can be implemented as a C++ vector S of unordered sets. The
set S[i] contains all terms t of the signature bounds of shape (i, t). The operations
regarding the signature bounds require divisibility in Sn and a fast find method for
given signature bound in S. Therefore we use std::unordered map::find, because it
has constant complexity in the average case.

3.8 Experiments

All timings in this section were obtained on a machine having a 2.6 GHz Intel(R)
Core(TM) i7-5600U CPU and 16 GB RAM. The C++ programs were compiled using
the GCC compiler version 5.3.1 with the -02 optimization flag. Timings that exceed
the timeout limit of 1500 seconds are marked by “>1500”. When measuring the time
consumption, we take only the actual runtime in account. In particular, the initial
memory allocation and the setup of Boolean rings are excluded. Since we are comparing
algorithms called from other software systems to our native C++ implementation, that
is usually faster in the initialization phase, this should be fair enough. The actual tests
have been performed many times to assure that there is no disturbance during the
computation which affects the running time.

To illustrate the difference between dense and sparse representations, we measure
some execution times of the sparse implementation (i.e., the sparse representations of
terms and coefficient matrices) of the Boolean BBA and the dense representation imple-
mented in C++ in Table 3.1. For benchmarking, we use systems of quadratic polynomial
equations coming from the algebraic attacks at Small Scale AES (ssAES, cf. [46]). The
number of rounds is denoted by r, the number of rows of the state by a, the number of
columns of the state by b and the size of the word by e. To these parameters we add
the number of indeterminates and the number of equations.

These timings show a first Boolean BBA implementation based only on standard
C++ libraries (such as std::bitset, boost::dynamic bitset, and std::vector), basic
profiling and a cache-friendly design. Recall that 0/1 coefficients of terms are stored in
std::bitset and boost::dynamic bitset only as one bit (plus some bytes in a header)
in the memory, in contradiction to bool, which is usually stored in one byte, because it
must be addressable. In fact, this size is platform dependent and can be larger.

From Table 3.1 one can clearly see that sparse BBBA outperforms dense the BBBA.
On one hand, dense representation turns out be very effective when performing opera-
tions such as XOR of two rows of a matrix. On the other hand, accessing a coefficient is
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Table 3.1: Timings of the implementation of the Boolean BBA in C++

Small scale AES BBBA (dense) BBBA (sparse)
# var # eq r a b e in seconds in seconds

20 36 1 1 1 4 0.04 0.01
36 60 1 1 2 4 1.60 0.14
36 68 2 1 1 4 1.17 0.27
40 72 1 2 1 4 12.76 0.21
52 100 3 1 1 4 27.15 7.03
64 112 2 1 2 4 240.23 35.03
68 132 4 1 1 4 953.44 17.94
72 120 1 2 2 4 422.61 4.56
72 136 2 2 1 4 >1500 299.72
84 164 5 1 1 4 >1500 148.92

100 196 6 1 1 4 >1500 439.10
116 228 7 1 1 4 >1500 1045.49

expensive, because the bits are packed in the memory and therefore masking is required.
Overall, sparse representation takes advantage of sparse encoding of algebraic attacks
on ssAES, and in this context sparse linear algebra clearly outperforms dense techniques.
Note that time performance does not depend only on the size of the input system, i.e.,
the number of polynomials and the number of indeterminates, but the shape of the
system.

In Table 3.2 we compare our implementation of the BBBA with Gröbner basis (GB)
methods. Note that implementations of Buchberger’s algorithm have been carefully
improved for several decades: Buchberger’s criteria allow us to avoid the computation
of many unnecessary S-polynomials, special data structures for Boolean polynomials
have been implemented, additional criteria for avoiding unnecessary critical pairs in
characteristic 2 have been developed, and so on. However, we have not found any really
satisfactory implementation of the BBBA. For instance, the current implementation
in ApCoCoA (cf. [109]) is able to do only the very smallest of the examples below in
reasonable time (under 30 min.).

Hence it is quite remarkable that the preliminary implementations of the algorithms
and optimizations presented in this chapter are sometimes already in the range of general
Gröbner basis implementations. We expect that the next round of optimizations, in-
cluding the prediction of zero reductions, i.e., the full analogues of Buchberger’s criteria,
will close the gap even more.

Table 3.2 gives some indications of the relative timings of various implementations
to compute the border bases or Gröbner bases of some ssAES ideals. By GBasis5 we
refer to the command for the Gröbner basis computation in CoCoA5 (see [1]), called from
within the ApCoCoA server. By slimgb we refer to the command in Singular, called
from within Sage [110].

These timings are still far away from the ones given in [26] for a specialized version of
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Table 3.2: BBBA/GB Timings for Small Scale AES Ideals

Small Scale AES BBA (sparse) GBasis5 slimgb

ssAES-1-1-1-4 0.01 0.004 0.23
ssAES-1-1-2-4 0.14 0.03 0.48
ssAES-2-1-1-4 0.27 0.54 0.54
ssAES-1-2-1-4 0.21 0.06 0.60
ssAES-3-1-1-4 7.03 0.20 0.86
ssAES-2-1-2-4 35.03 3.10 1.99
ssAES-4-1-1-4 17.94 0.94 1.22
ssAES-1-2-2-4 4.56 4.39 2.11
ssAES-2-2-1-4 299.72 14.92 2.62
ssAES-5-1-1-4 148.92 2.37 1.54
ssAES-6-1-1-4 439.10 9.44 2.02
ssAES-7-1-1-4 1045.49 210.88 2.39

the PoliBoRi package. As we noted above, this may be partially due to the particular
data structures (based on ZDDs) of this package, or to its highly optimized criteria for
avoiding critical pairs.

Let us finish this section with some experiments regarding the Signature-based Boolean
Border Basis Algorithm (SBBBA, see [59]) and other improvements which were briefly
discussed in Sect. 3.7. In Table 3.3 we measure the total number of calls to the reduction
function Reduce (i.e. Algorithm 3.7) in Algorithm 3.10. The SBBBA is implemented on
top of the standard BBBA. The main new addition is the signature mechanism which
allows us to skip some polynomials in V . The skipped polynomials are not to interre-
duced. For the SBBBA, we provide the total number of times when Algorithm 3.7 is
applied (# red), the same signature bound occurs (# dupl), and how many polynomials
in V reduce to the zero (# zero). These numbers tell us how successful the signatures are
for detecting unnecessary reductions – instead of doing some reductions we just skip the
polynomial. The relation between skipped signatures and the runtime of the algorithm
is nonlinear, because the polynomials in the final iteration of the BBA are usually very
dense, whence their reduction takes more time than the reduction of the polynomials
in the very first iterations. Thus skipping such dense polynomials provides a significant
speed-up.

Furthermore, note that the summation of the three rightmost columns in Table 3.3
does not give the value in the third column, because the choice of the next signature
bounds guide the computation in a different way than in the standard version of the
Boolean BBA.

In Table 3.4 we compare our implementation of Algorithm 3.10 and the SBBBA to
PolyBoRi, a very good implementation of Buchberger’s Algorithm for Boolean polyno-
mials, and to the SAT solver CryptoMiniSat version 5 (CMS). For the Boolean BBA,
we have in fact three versions: the standard version (see Algorithm 3.10), the signature
based version, and a version of the SBBBA with substitutions. The later version shares
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Table 3.3: The number of reductions in the Standard BBBA and the Signature Based
BBBA

Boolean system Standard BBBA Signature Based BBBA
# vars # eq # red # red # dupl # zero

20 36 3077 1647 183 530
36 67 17243 7748 775 2241
52 99 49809 23989 3996 10235
64 111 80564 41600 11233 20767
68 131 115252 50884 9806 24715
72 119 89325 42209 5172 13675
72 135 124834 57679 14051 28782
84 163 201419 85773 17158 44382

100 195 314388 140337 34696 77360
116 227 450060 235484 78668 151900
132 259 605857 313960 91796 186899

the core of the SBBBA. However, when a polynomial of type xi, xi + 1, xi + xj , or
xi + xj + 1 is discovered as a result of some row reduction, we substitute the value of xi
in all polynomials known so far, thereby reducing the complexity of the problem by one
indeterminate.

By PolyBoRi we refer to the PolyBoRi implementation of Buchberger’s Algorithm
called from within Sage version 7.5.1 (see [110]). We converted the Boolean polynomials
of the input to the CNF format by calling the dense ANF to CNF conversion which is a
built-in function in Sage. The later conversion will be discussed in detail in Chapter 4.

Table 3.4 shows that the timings of the SBBBA are approaching the speed of PolyBoRi
for smaller sized examples. The speedup provided by the signature technique seems to
be around a factor of 5. For the instances in Table 3.4, the substitution technique is
apparently a significant further improvement.
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Table 3.4: Comparison of the BBBA and the GBA timings

Boolean system BBBA SBBBA SBBBA+sub PolyBoRi CMS

# vars # gens in sec in sec in sec in sec in sec

20 36 0.04 0.03 0.01 0.22 0.01
36 67 0.24 0.30 0.09 0.62 0.02
52 99 4.97 1.70 0.79 0.97 0.03
64 111 27.31 16.97 12.45 1.79 0.06
68 131 27.35 6.79 1.68 1.25 0.06
72 119 73.24 12.20 4.59 1.80 0.06
72 135 129.58 10.96 2.80 2.22 0.06
84 163 87.83 18.19 6.05 1.69 0.07

100 195 282.23 54.06 11.61 2.10 0.07
104 199 >1500 1130.67 383.50 8.22 0.07
116 227 541.12 113.73 81.05 2.45 0.09
132 259 1087.58 252.95 152.87 3.10 0.10
148 291 >1500 473.78 263.10 3.41 0.10
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Chapter 4

Integrating Algebraic and SAT
Solving

Motivation Many search problems over Boolean variables can be formulated in terms
of the satisfiability of a set of clauses or the solving of a system of Boolean polynomials.
There exists a great variety of algorithms coming from different areas such as commu-
tative algebra, SAT or SMT, that can be used to tackle these instances. However, their
approaches to inferring new constraints vary and seem to be complementary to each
other. For instance, XOR constraints are handled very differently in SAT solvers and in
computer algebra systems. Thus, it is natural to ask: Is it possible to create a platform
that combines the power of both types of solvers? The answer is “yes”, and in this
chapter we provide a combination of the Boolean Border Basis Algorithm (BBBA) with
a CDCL SAT solver in a portfolio-based fashion. The integration has been implemented
in C++.

Related work For an integration of SAT solvers with the Gröbner basis algorithm, we
refer to [114], [87] or [37]. A combination of a SAT solver with the XL algorithm can be
found in [30]. Yet another approach is to modify a SAT solver such that it admits XOR

clauses (besides a set of CNF clauses), i.e. XORs of literals such as x1 ⊕ x2 ⊕ x3 = True.
For various methods dealing with XOR clauses, we refer the reader to [13, 75] or to [106]
for a concrete implementation. This chapter is based on the articles [53–55].

Structure and contents To achieve the goal described above, we have to discuss con-
version methods from the conjunctive normal form (CNF) to the algebraic normal form
(ANF) of a Boolean function. This motivates to define algebraic and logical representa-
tions in Sect. 4.1. Whereas the reverse conversion has been studied before (see Sect. 4.2),
the CNF to ANF conversion has been achieved predominantly via a standard method
described in Sect. 4.3 which tends to produce many polynomials of high degree. Based
on a block-building mechanism, we design a new blockwise algorithm for the CNF to
ANF conversion in Sect. 4.4 which is geared towards producing fewer and lower degree
polynomials. In Sect. 4.5, in particular, we look for as many linear polynomials as pos-
sible in the converted system and check that our algorithm finds them. In Sect. 4.6 we
list some applications of given conversion methods.

After the theory of various conversions is prepared, we are ready to describe an in-
tegration of algebraic and SAT solving in Sect. 4.7 together with some implementation
remarks in Sections 4.8 and 4.9. Instead of building a complete fusion or a theory solver
for a particular problem, both solvers work independently and interact through a com-
munication interface. Hence a greater degree of flexibility is achieved. The SAT solver
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antom, which is currently used in the integration, can be easily replaced by any other
CDCL solver. Moreover, the ideas described in this chapter can be used to tailor an
integration with various algebraic solvers, not only the BBBA. Altogether, this is the
first open-source implementation of the BBBA and its combination with a SAT solver.
Experiments in Sect 4.10 show that the ANF produced by our algorithm outperforms
the standard conversion in “real life” examples originating from cryptographic attacks,
and that our integration has potential to outperform the base solvers.

4.1 Preliminaries

The following definition creates a bridge between algebraic and SAT solving. From
the algebraic point of view, we are interested in zeros (i.e. assignments yielding False) of
the system. From the logic point of view, we consider models (i.e. assignments yielding
True) of a CNF formula.

Definition 4.1. Let S ⊆ Bn be a set of Boolean polynomials and C a set of clauses in
the logical variables X1, . . . , Xn. We say that C is a logical representation of S, resp.
that S is an algebraic representation of C, if and only if S(C) = Z(S).

The following observations are immediate, but useful.

Proposition 4.2. Let k ∈ N, and let Si ⊆ Bn be sets of Boolean polynomials and Ci sets
of clauses in logical variables X1, . . . , Xn for i = 1, . . . k. Then the following statements
hold.

(a)
⋂k
i=1Z(Si) = Z(

⋃k
i=1 Si)

(b)
⋂k
i=1 S(Ci) = S(

⋃k
i=1Ci)

(c) Let Ci be a logical representation of Si for i ∈ {1, . . . k}. Then
⋃k
i=1Ci is a logical

representation of
⋃k
i=1 Si.

Using Proposition 2.18 and 2.12, we get the following correspondences. Every set
of clauses C corresponds to a Boolean function that can be converted to a Boolean
polynomial in ANF. Conversely, every polynomial in S can be converted individually to
a Boolean function and thus to CNF, and then the union of all converted clauses is the
logical representation of S (see Proposition 4.2). Thus such representations exist.

In general, the algebraic representation of S is not unique. However, if #S = 1, the
representation is unique.

Definition 4.3. Let C be a set of clauses in n logical variables. The Boolean polynomial
f ∈ Bn with S(C) = Z(f) is called the standard algebraic representation of C.

The polynomial f in this definition represents the unique Boolean function Fn2 → F2

mapping a 7→ 0 if a ∈ S(C) and a 7→ 1 otherwise. The polynomial is unique as well by
Proposition 2.12.
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4.2 Conversions from ANF to CNF

Sometimes new indeterminates xi (or logical variables Xj) are introduced during the
conversion process, e.g., during the sparse conversion in the next section. In this case,
we assume that the corresponding logical variables Xi (or indeterminates xj) are defined
even if they are not used in the logical formula (or in the Boolean system).

4.2 Conversions from ANF to CNF

First of all, let us discuss what kinds of ANF systems are well suited to converting
them to SAT. Note that if the Boolean system is rather dense, it is probably better to
solve it by algebraic solvers or even by brute force. A typical example where algebraic
solvers outperform SAT solvers is solving dense linear systems. On the other hand, the
memory consumption of SAT solvers is kept under control, and therefore they tend to
be faster for sparse constraint inputs, for which algebraic solvers may have a huge space
consumption. (For more details and experiments, see [17, Ch. 13].)

In this section we recall some efficient conversion methods for a set of Boolean polyno-
mials in ANF (i.e., XOR of ANDs) to a Boolean formula in CNF (i.e., AND of ORs). There
are basically two types of such conversions. Both of them convert only one Boolean
polynomial at a time. The first conversion method does not introduce new auxiliary
variables, creating a sparse representation, whereas the second one does and results in
a dense representation.

The sparse conversion is truth-based and uses the assumption that the input polyno-
mials do not have many indeterminates. Thus one can go trough all possible assignments
to construct the sparse CNF. The complexity of this conversion is clearly exponential
w.r.t. the number of indeterminates appearing in the polynomial.

Example 4.4. Consider the truth table of the polynomial f(x1, x2) = x1x2 + x2 + 1.

x1 x2 f

0 0 1
0 1 0
1 0 1
1 1 1

For each assignment that yields True, we construct one clause that eliminates this
particular assignment. Thus the set of clauses C =

{
{X1, X2}, {X̄1, X2}, {X̄1, X̄2}

}
is the logical representation of the polynomial f . Note that the set {x1, x2 + 1} is an
algebraic representation of C as well, so the representations are not uniquely determined.

4

Dense conversion methods (see [11], [63]) introduce new variables. First, the poly-
nomial f ∈ Bn is linearized. For each of its terms of degree greater than one, we intro-
duce a new auxiliary indeterminate t and encode the resulting binomial in CNF. I.e., we
convert xi1xi2 · · ·xi` by encoding t + xi1xi2 · · ·xi` to the clauses {Xi1 , T̄}, . . . , {Xi` , T̄},
{X̄i1 , X̄i2 , . . . , X̄i` , T}. After this step, we are left with (possibly long) linear polyno-
mials. We split them into smaller ones by introducing further auxiliary indeterminates
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according to a predefined cutting number r. To the resulting shorter linear polynomials
we apply the sparse conversion.

Example 4.5. Let r = 3. We cut the linear polynomial x1 + x2 + · · · + x5 into two
polynomials x1 + x2 + x3 + y and y + x4 + x5. Note that we have introduced one new
indeterminate y here. For instance, when we convert x1 + x2 + x3 + x4 to CNF, we get
the clauses

{X̄1, X2, X3, X4}, {X1, X̄2, X3, X4}, {X1, X2, X̄3, X4}, {X1, X2, X3, X̄4},
{X̄1, X̄2, X̄3, X4}, {X̄1, X̄2, X3, X̄4}, {X̄1, X2, X̄3, X̄4}, {X1, X̄2, X̄3, X̄4}.

4

Let f ∈ Bn be a polynomial of degree d, let k = # Supp(f), and let r be the cutting
number. We introduce at most k new variables for each term. Every term is encoded
to at most d + 1 clauses. The linear XOR chain of length k is divided into

⌊
k
r

⌋
linear

polynomials, and every linear polynomial is then converted to at most 2r clauses. In
total, we introduce at most k+

⌊
k
r

⌋
new variables and at most k ·(d+1)+

⌊
k
r

⌋
·2r clauses.

Both conversions suffer from the problem that breaking the XOR structure in the ANF
tends to introduce many auxiliary indeterminates or many new clauses.

4.3 The Standard Conversion from CNF to ANF

The standard conversion from CNF to ANF converts each clause of C to one Boolean
polynomial. It has been known for a long time (cf. [60]). The detailed description is
given in Algorithm 4.1.

Algorithm 4.1 StdANF (Standard CNF to ANF Conversion)

Input: A set of clauses C in logical variables X1, . . . , Xn.
Output: A set S ⊆ Bn such that S is an algebraic representation of C.

1: S := ∅
2: foreach c in C do
3: f := 1
4: foreach L in c do
5: if L = Xi is positive then
6: f := f · (xi + 1)
7: else if L = X̄i is negative then
8: f := f · (xi)
9: end if

10: end foreach
11: S := S ∪ {f}
12: end foreach
13: return S
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Proposition 4.6. Algorithm 4.1 outputs a system of Boolean polynomials S such that
S is an algebraic representation of C.

Proof. Let c = {L1, L2, . . . , Lm} be a clause of C. The assignment (a1, . . . , an) ∈ Fn2
satisfies c if and only if the polynomial f = `1 · · · `m vanishes at the point (a1, . . . , an),
where `i = xi + 1 for Li = Xi and `i = xi for Li = X̄i. The rest follows from Proposi-
tion 4.2.

Let us apply this algorithm to a concrete case.

Example 4.7. Given the set of clauses {{X1, X2}, {X̄1, X2, X3}, {X4, X5}, {X1, X̄2, X3},
{X̄1, X̄2, X̄3}, {X4, X̄5}, the standard CNF to ANF conversion yields the following re-
sults.

{X1, X2} → x1x2 + x1 + x2 + 1
{X̄1, X2, X3} → x1x2x3 + x1x2 + x1x3 + x1
{X4, X5} → x4x5 + x4 + x5 + 1
{X1, X̄2, X3} → x1x2x3 + x1x2 + x2x3 + x1
{X̄1, X̄2, X̄3} → x1x2x3
{X4, X̄5} → x4x5 + x5

4

Clearly, Algorithm 4.1 performs at most #C · n multiplications in Bn. Notice that
its output f for a single input clause c is the standard algebraic representation of c.
Moreover, deg(f) equals the length of the clause c in the algorithm. A clause c containing
only positive literals is converted to a polynomial having 2#c terms in its support.
Hence even a small set of clauses may be converted to a rather dense polynomial system
containing high-degree polynomials. The degree and the length of the support of these
polynomials can be viewed as an indicator of their usefulness. It follows that such a
conversion does, in general, not give an encoding which is useful for further applications.

One way how to overcome this exponential blowup in the support is to introduce a
new indeterminate for every negation of a logical variable. The exact procedure is given
in Algorithm 4.2.

Note that Algorithm 4.2 produces only a term (with a linear polynomial) per clause.
The proof of correctness follows from Proposition 4.6. Let C be a set of clauses in
n logical variables with #C = k and ` = maxc∈C #c. The conversion produces k
monomials of degree at most ` and at most n linear trinomials.

4.4 A Blockwise Conversion from CNF to ANF

Let C be a set of clauses representing a propositional logic formula in CNF. First of
all, we group certain clauses in C together using the following definitions.

Definition 4.8. (a) The set of variables Xi such that Xi or X̄i is contained in one of
the clauses of C is denoted by Var(C) and is called the set of variables of C.

(b) We say c ∈ C has positive (or negative ) sign if the number of negative literals is
an even (or odd) number.
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Algorithm 4.2 ExtANF (Extended Standard CNF to ANF Conversion)

Input: A set of clauses C in logical variables X1, . . . , Xn.
Output: A set S ⊆ B2n of Boolean polynomials defined over the indeterminates

x1, . . . , xn, y1, . . . , yn such that S is an algebraic representation of C. (The corre-
sponding logical variables Yi are not used in C.)

1: S := ∅
2: foreach c in C do
3: f := 1
4: foreach L in c do
5: if L = Xi is positive then
6: f := f · (yi)
7: S := S ∪ {xi + yi + 1}
8: else if L = X̄i is negative then
9: f := f · (xi)

10: end if
11: end foreach
12: S := S ∪ {f}
13: end foreach
14: return S

(c) We define the length of a clause c ∈ C as the cardinality #c.

(d) Let c, c′ ∈ C. A number m ≥ 1 such that #
(

Var(c) ∩ Var(c′)
)
≥ m is called an

overlapping number of c and c′.

Given a number m, Algorithm 4.3 decomposes a set of clauses C into blocks Bc for
c ∈ C such that m is an overlapping number of c and every clause in Bc.

Notice that some clauses in C may not be included in the set B produced by Algo-
rithm 4.3. This happens when the length of a clause is less than m. Such clauses are
returned in the set T . Furthermore, the cardinality of the set of clauses contained in
B ∪ T may be greater than #C. The cardinality is at least equal to #C, because every
c ∈ C is contained either in the set Bc in B, or c is put into T in Step 6. Moreover,
we note that Algorithm 4.3 performs at most #C iterations of the foreach loop, at
most

(
#C
2

)
intersections in Step 2, and at most

(
#B
2

)
comparisons in Step 5. Hence this

algorithm has a polynomial time complexity.

Proposition 4.9. The output of Algorithm 4.3 is uniquely determined.

Proof. The sets in B are related to the following graph. For m ∈ N, we define an
undirected graph Gm,C which has C as vertices and for which two distinct clauses c, c′ ∈ C
form an edge if and only if #

(
Var(c) ∩ Var(c′)

)
≥ m. Clearly, Step 2 of Algorithm 4.3

computes the closed neighborhood of a vertex c of Gm,C , i.e., the set of all vertices
connected to c by an edge. Then Step 5 selects the maximal neighborhoods w.r.t.
inclusion. This shows that the output of Algorithm 4.3 is uniquely determined by C and
m, and does not depend on the order in which the clauses c are selected in Step 1.
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Algorithm 4.3 Blocks (Building m-Blocks)

Input: A set of clauses C, an overlapping number m ∈ N.
Output: A set of subsets B of C and a subset T of C such that for B ∈ B with #B ≥ 2

and for every b ∈ B, there exists an element b′ ∈ B \ {b} with the property that m
is an overlapping number for b and b′, and such that

(⋃
B∈B B

)
∪ T = C, and

every clause in T contains less than m literals.

1: foreach c in C do
2: Bc :=

{
c′ ∈ C | #

(
Var(c) ∩Var(c′)

)
≥ m

}
3: end foreach
4: B′ := {Bc | c ∈ C, Bc 6= ∅}
5: Let B be the set of maximal elements of B′ w.r.t. inclusion.
6: T := C \

⋃
c∈C Bc

7: return (B, T )

The elements of the set B returned by Algorithm 4.3 will be called the m-blocks of
C. Let us apply Algorithm 4.3 to some easy cases.

Example 4.10. Let C = {c1, c2, c3} with c1 = {X1, X2, X3, X4}, c2 = {X1, X2} and
c3 = {X3, X4}, and let m = 2. Then the entire set C is one 2-block. Notice that this
block does not correspond to a complete subgraph of Gm,C , because the edge (c2, c3) is
missing. 4

Example 4.11. In the setting of Example 4.7, Algorithm 4.3 calculates the following
two 2-blocks.

{X1, X2}
{X̄1, X2, X3}
{X4, X5}
{X1, X̄2, X3}
{X̄1, X̄2, X̄3}
{X4, X̄5}

→


{X1, X2}
{X̄1, X2, X3}
{X1, X̄2, X3}
{X̄1, X̄2, X̄3}

 , [ {X4, X5}
{X4, X̄5}

]

4

Now we are ready to present the main Algorithm 4.4.
It is difficult to give a meaningful upper bound for the time complexity of this al-

gorithm, since it involves a number of Gröbner basis calculations. As we shall see in
the next section, if one of the sets in B contains a complete signed set of clauses (see
Definition 4.15), the conversion will contain a linear polynomial. In this case, the corre-
sponding Gröbner basis will be found rather quickly. As one can infer from the tables in
the last section, this happens a lot in practically relevant cases. But, of course, it is clear
that one can construct special sets of clauses for which the Gröbner basis calculation is
particularly expensive.

Proposition 4.12. The output of Algorithm 4.4 is an algebraic representation of C and
is uniquely determined by σ and m.
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Algorithm 4.4 BlockANF (Blockwise CNF to ANF Conversion)

Input: A set of clauses C in logical variables X1, . . . , Xn, a degree compatible term
ordering σ, and an overlapping number m ∈ N.

Output: A set Sσ,m ⊆ Bn such that Sσ,m is an algebraic representation of C.
Require: Algorithm 4.1 and 4.3, a reduced Boolean Gröbner basis algorithm.

1: S′ := ∅
2: (B, T ) := Blocks(C,m).
3: B := B ∪

⋃
t∈T {t}

4: foreach B in B do
5: Q := StdANF(B)
6: Let G be the reduced Boolean σ-Gröbner basis of the ideal 〈Q〉.
7: S′ := S′ ∪G
8: end foreach
9: Let Sσ,m be an LTσ-interreduced F2-basis of 〈S′〉F2 such that its coefficient matrix

w.r.t. σ is in reduced row echelon form.
10: return Sσ,m

Proof. First we prove that Sσ,m is an algebraic representation of C. In Step 3 we have
the equality

⋃
B∈B

(⋃
c∈B c

)
= C, because every c ∈ C is contained either in the set Bc

in B, or c is put into T in Step 6 of Algorithm 4.3. We know that Q is an algebraic
representation of B ∈ B in Step 5 by Proposition 4.6. Furthermore, G is an algebraic
representation of B as well, because 〈Q〉 = 〈G〉. Clearly S′ is an algebraic representation
of C in Step 9 by Proposition 4.2. Since LTσ-interreduction does not change the set of
zeros, we get that Sσ,m is an algebraic representation of C.

By Proposition 4.9 we know that the set B in Step 3 is uniquely determined. The
reduced Boolean σ-Gröbner basis of the ideal 〈Q〉 in Step 6 is unique, and so is the basis
in Step 9.

Example 4.13. Let us apply Algorithm 4.4 in the setting of Example 4.7.
{X1, X2} → x1x2 + x1 + x2 + 1
{X̄1, X2, X3} → x1x2x3 + x1x2 + x1x3 + x1
{X1, X̄2, X3} → x1x2x3 + x1x2 + x2x3 + x1
{X̄1, X̄2, X̄3} → x1x2x3

 → x2x3 + x2 + x3 + 1
x1 + x2 + x3

[
{X4, X5} → x4x5 + x4 + x5 + 1
{X4, X̄5} → x4x5 + x5

]
→ x4 + 1

As we can see, the output is a set of three polynomials of degrees 1, 1, 2 instead of the
six polynomials of degrees 2, 2, 2, 3, 3, 3 in Example 4.7. 4

In the following we study Step 6 of Algorithm 4.4 in more detail. Note that the
application of Algorithm 4.2 instead of Algorithm 4.1 would not make any difference,
in principle, because forming the S-polynomial of a term yit for some squarefree term t
and a linear polynomial yi + xi + 1 is equivalent to substituting yi = xi + 1 into yit, and
hence the output of Algorithm 4.1 is obtained.
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Claims (a)–(d) of the following proposition are algebraic versions of the one-literal,
subsumption, clean-up, and resolution rules of DPLL. In this sense, the Gröbner basis
algorithm can be interpreted as performing basic logical reasoning.

Proposition 4.14. In the setting of Algorithm 4.4, let B = {c1, . . . , ck} be a set of
clauses. Let Q = {q1, . . . , qk} be the set of Boolean polynomials such that qi is the
standard algebraic representation of ci for i = 1, . . . , k. Let G be the reduced Boolean
σ-Gröbner basis of the ideal I = 〈Q〉.

(a) Let ci, cj ∈ B be clauses such that ci is a proper subclause of cj. Then G is equal to
the reduced Boolean σ-Gröbner basis of 〈Q \ {qj}〉.

(b) Let L be a literal and assume that cj = {L} is an element of B. Let {qi1 , . . . , qis}
be the set of all clauses in B different from qj and containing the literal L. Then G
is the reduced Boolean σ-Gröbner basis of 〈Q \ {qi1 , . . . , qis}〉.

(c) Let ci ∈ B be of the form ci = c′ ∪{Xj , X̄j} for some clause c′ and a logical variable
Xj. Then G is the reduced Boolean σ-Gröbner basis of 〈Q \ {qi}〉.

(d) Assume that ci, cj ∈ B satisfy ci = w ∪ {Xe} and cj = w′ ∪ {X̄e} for some logical
variable Xe and clauses w,w′. Let r = w ∪ w′ be the resolvent of ci and cj on the
variable Xe. Then the standard algebraic representation of r can be derived from
qi, qj by polynomial calculus.

(e) We have S(B) = ∅ if only if G = {1}.

(f) If there exists a clause cj ∈ B such that Var(c′) ⊆ Var(cj) holds for all c′ ∈ B, then
we have max{deg(g) | g ∈ G} ≤ deg(qj).

(g) Let f ∈ I be such that there exists a clause c for which f is the standard algebraic
representation of c. If there exists a Boolean polynomial g ∈ G such that LTσ(f) =
LTσ(g), then f = g.

Proof. (a) From the inclusion ci ⊂ cj , we know that qj is a multiple of qi. Hence qj is
reduced to zero by qi and the claim follows.

(b) All polynomials in {qi1 , . . . , qis} are multiples of qj and thus are reduced to zero.

(c) The standard algebraic representation of ci is qi = xj(xj + 1)f for some variable xj
and a polynomial f . Thus the Boolean polynomial qi satisfies qi = (x2j + xj)f = 0
in Bn, and the claim follows.

(d) The standard algebraic representation of ci (or cj) is qi = (xe + 1)f (or qj = xeg)
for some polynomials f, g. Then the algebraic representation of r is the polynomial
fg = g(xe + 1)f + fxeg = gqi + fqj .

(e) We know that the variety of Q over the algebraic closure of F2 is equal to Z(Q),
because we assume that the field equations are contained in the ideal. Hence the
claim follows from the strong version of Hilbert’s Nullstellensatz.
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(f) Let s be an S-polynomial that is produced when computing G. Every term in the
support of s divides LTσ(qj). Hence the claim follows.

(g) We have f =
∏`
j=1(xij + aj) for some aj ∈ F2 and for some number `. Because of

LTσ(f) = LTσ(g), we know that LTσ(f) is minimal w.r.t. division in LTσ(I). All
terms in f divide LTσ(f), and so f cannot be reduced further. Thus f is contained
in some reduced Boolean σ-Gröbner basis of the ideal I. Now the claim follows form
the uniqueness of the reduced Boolean σ-Gröbner basis.

Notice that Claim (g) can also be found in [22, Thm. 5.3.5.]. Moreover, the algebraic
representation of r in Claim (d) is an S-polynomial if w and w′ do not share any variable.
Claim (d) implies that resolution can be efficiently simulated by polynomial calculus
when Algorithm 4.2 is used for the conversion. In more detail, let ` = max{#ci,#cj}.
Then we perform at most `(` − 1) multiplications of terms to obtain gqi (or fqj) from
qi (or qj) and one addition to get fg.

4.5 Conversion to Linear Polynomials

The most valuable polynomials for algebraic solvers in the result of a CNF to ANF
conversion algorithm are the linear ones. Therefore we now focus on the task of identi-
fying sets of clauses containing a linear polynomial in their algebraic representation.

Definition 4.15. A set of clauses, all of which have the same length, which consists of
all possible clauses with either only positive or only negative sign, is called a complete
signed set of clauses.

A complete signed set of clauses of length ` consists of 2`−1 clauses. A complete signed
set of clauses forms a complete subgraph of the graph G`,C (see the definition in the proof
of Proposition 4.9) having only positive, or only negative clauses of length ` as nodes.

Proposition 4.16. Let K be a complete signed set of clauses with positive (or negative)
sign and Var(K) = {Xi1 , . . . , Xi`}. Then xi1 + · · · + xi` + 1 (or xi1 + · · · + xi`) is the
standard algebraic representation of K.

Proof. Let K ′ be the sparse conversion of f = xi1 + · · ·+ xi` + 1. From the truth table
of f it is easy to see that K ′ is a complete signed set of clauses with positive sign in
the variables Var(K). Complete signed sets of clauses with positive sign are uniquely
determined by their set of variables. Thus we get K = K ′. The negative case follows
analogously.

Example 4.5 illustrates the previous proposition. A lower number of clauses can also
produce linear polynomials, but we have to allow clauses of different lengths.

Proposition 4.17. (a) Let ϕ,ψ be propositional logic formulas in n logical variables.
Then ϕ is equivalent to the formula ϕ′ = (ϕ∨ψ)∧(ϕ∨ψ̄), i.e. we have S(ϕ) = S(ϕ′).

(b) Let c, w be clauses. The set C = {c} is equivalent to C ′ = {c ∪ w, c ∪ w̄}, i.e. we
have S(C) = S(C ′).
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(c) In the setting of (b), assume that w has length k. Write w = {L1, . . . , Lk} with
literals Li. Then the set {c} is equivalent to the set of all 2k clauses of shape
c ∪ {L∗1, . . . , L∗k}, where L∗i equals to Li or L̄i.

Proof. Claim (a) follows easily by comparing the truth tables of ϕ and (ϕ∨ψ)∧ (ϕ∨ ψ̄).
The other claims are immediate consequences of (a).

The following example illustrates this proposition.

Example 4.18. Let B =
{
{X1, X2}, {X̄1, X2, X3}, {X1, X̄2, X3}, {X̄1, X̄2, X̄3}

}
. The

first clause in B is equivalent to the two clauses {X1, X2, X3}, {X1, X2, X̄3}. In view of
this, we have covered all four possible combinations for negative signed clauses of length
3. Indeed, Algorithm 4.4 converts B to x1 + x2 + x3 and x2x3 + x2 + x3 + 1. 4

Proposition 4.17 leads to the following combinatorial test for checking whether the
conversion of a set of clauses B contains a linear polynomial.

Proposition 4.19. Let B = {c1, . . . , ck} be a set of clauses, and V = {Xi1 , . . . , Xi`} be
a set of ` variables in Var(B). For j = 1, . . . , k, we define the following sets:

B+
j,V = {c ⊆ V ∪ V̄ | cj ⊆ c,#c = `, c has positive sign},

B−j,V = {c ⊆ V ∪ V̄ | cj ⊆ c,#c = `, c has negative sign}.

(a) If

2`−1 =
∑

∅6=J⊆{1,2,...,k}

(−1)#J−1 · #
( ⋂
j∈J

B+
j,V

)
,

then the ideal generated by any algebraic representation of B contains xi1 + · · · +
xi` + 1.

(b) If

2`−1 =
∑

∅6=J⊆{1,2,...,k}

(−1)#J−1 ·#
( ⋂
j∈J

B−j,V

)
,

then the ideal generated by any algebraic representation of B contains xi1 + · · ·+xi`.

Proof. Let us focus on the first (i.e., positive) case. The second case follows analogously.
In view of Proposition 4.17, the set B+

j,V contains all possible extensions of cj in the set
of variables V to positive clauses of length `. We search for a complete signed set in the
union of all sets B+

j,V . In other words, the cardinality of this union must be equal to

2`−1 in order to contain a complete signed set. Note that these sets may not be disjoint.
Thus we use the inclusion-exclusion principle for determining #

(⋃k
j=1B

+
j,V

)
and obtain

the claimed formula.

In practice, we do not have to apply the inclusion-exclusion principle, if the pro-
gramming language we use has “set” as a built-in data structure. Algorithm 4.5 is a
straightforward application of Proposition 4.19. The sets B+

j,V and B−j,V can be com-
puted by extensions to the prescribed length ` via brute-force and grouping the result
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Algorithm 4.5 LinANF (Combinatorial Search for Linear Polynomials)

Input: A set of clauses B = {c1, . . . , ck}.
Output: A set of linear polynomials L such that the ideal generated by an algebraic

representation of B contains L.

1: L′ := ∅
2: foreach subset V = {Xi1 , . . . , Xi`} of Var(B) do
3: B+ := ∅
4: B− := ∅
5: for j = 1, . . . , k do
6: B+ := B+ ∪B+

j,V

7: B− := B− ∪B−j,V
8: end for
9: if #B+ = 2`−1 then

10: L′ := L′ ∪ {xi1 + · · ·+ xi` + 1}
11: end if
12: if #B− = 2`−1 then
13: L′ := L′ ∪ {xi1 + · · ·+ xi`}
14: end if
15: end foreach
16: Let L be an LTσ-interreduced F2-basis of 〈L′〉F2 .
17: return L

according to sign. Note that the ideas behind Algorithm 4.5 can be further developed,
and a more efficient algorithm can be designed. (Some attempts in this direction can be
deduced from the source code of CryptoMiniSat, see src/xorfinder.cpp in [106].)

Since we have to check all subsets of Var(B) in Step 2, Algorithm 4.5 is only practical
for rather small-sized sets Var(B). Even if we are still able to directly derive linear
polynomials from a large set of clauses C by Algorithm 4.5, the following proposition
shows that Algorithm 4.4 produces at least the same number of linear polynomials.

Proposition 4.20. Let C be a set of clauses, let I 6= 〈1〉 be the ideal generated by an
algebraic representation of C, and let σ be a degree compatible term ordering.

(a) Let L ⊂ I be an LTσ-interreduced set of linear (non-constant) polynomials. Let G be
the reduced Boolean σ-Gröbner basis of I. Then we have #L ≤ #{g ∈ G | deg(g) =
1}.

(b) Let m = 1 be an overlapping number. Let L be the output of applying Algorithm 4.5
to C. Let S be the output of applying Algorithm 4.4 to (C, σ,m). Then we have
#L ≤ #{s ∈ S | deg(s) = 1}.

Proof. (a) Let f ∈ I = 〈G〉 be a linear polynomial in L. If LTσ(f) ∈ I, then LTσ(f) ∈ G,
and we are done. In the other case, we know that LTσ(f) is minimal in LTσ(I) with
respect to divisibility. The tail of f can be reduced only by linear polynomials, and this
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results in a linear polynomial again. After all reductions are done, we still have a linear
polynomial in G.

(b) Assume that Algorithm 4.5, applied to the input C, has discovered a set of clauses
K which contains a complete signed block after extension. Using Algorithm 4.3 on the
input (C,m), we compute a pair (B, T ). If # Var(K) = 1, then the corresponding linear
polynomial is derived from a clause in T , and we are done. If # Var(K) ≥ 2, then K
appears in a block B ∈ B, and we can use (a).

4.6 Some Applications of the Conversion Algorithms

In this section we collect some applications of the conversion methods discussed above,
and in particular, of Algorithm 4.4.

Identifying XORs Algorithm 4.3 builds blocks of clauses that tend to contain a com-
plete signed sets of clauses. The reduced Boolean Gröbner basis discovers the linear
polynomials corresponding to such blocks (cf. Proposition 4.20). Hence Algorithm 4.4
can be used to find XOR constraints from a CNF formula as in Algorithm 4.5. These
constraints may be then processed by a linear algebra solver.

Solving by conversions During our experiments, we found that the conversion of a
Boolean system S to CNF and back to ANF may give us enough linearly independent
linear polynomials to solve the initial system S. Note that having n linearly independent
linear polynomials in the ideal 〈S〉 ⊂ Bn is enough to derive the unique solution of
the system by Gaußian elimination. We observed this behavior for the polynomials
representing Small-scale AES encryption ssAES-1-1-1-4 and ssAES-2-1-1-4. These
polynomials can be generated in Sage [110]. For bigger examples, this is usually not the
case. On the other hand, one frequently gains additional linear polynomials in the ideal
by this technique. It is made explicit in Algorithm 4.6.

Algorithm 4.6 GenLin (Generating Linear Polynomials in the Ideal)

Input: A set of Boolean polynomials S, a degree compatible term ordering σ, and an
overlapping number m ∈ N.

Output: A set of linear polynomials in 〈S〉.
Require: Algorithm 4.4, a sparse conversion method described in Sect. 4.2.

1: Compute a logical representation of S by a sparse conversion method. Call the result
C.

2: Q := BlockANF(C, σ,m)
3: L := {l ∈ Q | deg(l) = 1}
4: return L

Algebraic solving of CNF Converting a simple Boolean system S to CNF using the
sparse strategy and back to polynomials by Algorithm 4.1, gives us usually a rather
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denser and higher-degree system Ŝ. Even in the cases when the computation of a
Gröbner basis of the ideal 〈S〉 is done in seconds, a Gröbner basis of the ideal 〈Ŝ〉 may
take hours to compute. Algorithm 4.4 provides more suitable ANFs for the computation
of a Gröbner basis of the ideal 〈S〉. This improvement is made explicit and quantified
in Section 4.10.

However, computing a Gröbner basis of 〈S〉 is still not feasible for larger instances.
Note that, for SAT solvers, input CNFs defined using 10000 variables are usually toy
instances. On the other hand, polynomial systems using 10000 indeterminates are most
likely beyond the reach of algebraic solvers. To give a sense of scale, the Gröbner basis
routine implemented in [20] did not finish under 3000 seconds for any ANF instance
listed in Table 4.1. Thus applying algebraic solvers to the conversion of a set of clauses
is promising only if we integrate powerful logical reasoning (such as resolution) into
them. First steps in this direction are done in the next section.

Hybrid reasoning Conversions from CNF to ANF give us another perspective on SAT
solving, and vice versa. In the next section we look closer at resolution, which is the
most fundamental rule of inference in SAT solvers, from the algebraic point of view.
This approach enables to define a new data structure and algebraic rules of inference
which generalize and improve resolution in Chapter 5.

Hybrid solving When SAT solvers target really hard problems, an integration with
an algebraic solver may come in handy. Algorithm 4.4 can be used to form a basic
skeleton for integrating algebraic and SAT solvers. The SAT solver sends a “new” set of
clauses C to the algebraic solver. Then Steps 1–8 are executed in a similar fashion as in
Algorithm 4.4. (The Gröbner basis algorithm can be substituted by any other algebraic
method.) Instead of appending the result G, the algebraic solver sends StdANF(G) back
to the SAT solver. There is a great degree of flexibility in this approach, e.g., special
filtration methods can be applied to choose which clauses resp. polynomials are selected
for transmission. The details are given in the next section.

4.7 The Integration of the BBBA with a SAT Solver

Many search problems can be encoded as systems of Boolean polynomials or SAT-
instances. That means that one can solve the same problem with algebraic means such
as the Boolean Border Basis Algorithm (BBBA) or a SAT solver individually. The
conversion methods discussed in this chapter transform a Boolean system to a CNF
formula (and vice versa) such that the F2-rational zeros of the system correspond to the
satisfying assignments of the logical formula. Thus we may run both solvers in parallel
and let them interchange the “new information”, or one solver can dynamically help
the another one with a certain subproblem, etc. We will focus on the scenario when an
algebraic solver helps a SAT solver because it provides the best results according to our
initial experiments.

Previously, we had handled the interaction of two solvers manually. During our ex-
periments, several examples were observed where one solver is sped up by utilizing
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information derived by the other. Based on these observations, the communication was
automated with a view towards optimizing the achievable gains.

The integration is tailored to be applicable for most CDCL SAT solvers. For our
experiments, we used the SAT solver antom [101]. Modern SAT solvers are mainly based
on CDCL. They produce many learned clauses which contain new information that can
be potentially used in the BBBA after a conversion. Conversely, any new polynomial
found in the ideal by the BBBA can be converted and sent to a SAT solver. To reduce
the amount of information that needs to be transferred, we transmit only short clauses
and short polynomials of a low degree. Moreover, an additional filtering technique has
been developed to further reduce the number of clauses that are handled by the BBBA.
This selection strategy makes the BBBA sufficiently fast to keep up with the SAT solver.
In this way the BBBA is not stuck with computations which are potentially outdated
and irrelevant for the SAT solver by the time they are finished.

Description of the integration. Assume that the CDCL SAT solver is running on a
given CNF (interpreted as a set of clauses W ) in the background. Our approach is
divided into 7 steps (viewed from the BBBA side) which repeat until the SAT solver
stops. The diagram of the integration is depicted in Figure 4.1. Note that Algorithm 3.10
can be replaced by any other algebraic reasoning in general, and the filtering is scaled
by four parameters a, b, c, d ∈ N.

(1) Receiving clauses. The SAT solver sends a set of new learned clauses C with #C = a
that has generated to the BBBA.

(2) Clause filtration. We define a subset C ′ ⊆ C, where C ′ contains clauses k ∈ C such
that there exist k′ ∈ C with k 6= k′ that shares at least one variable with k. We
buffer only the first b clauses on an as-they-come basis.

(3) Converting clauses to polynomials. We use the standard conversion in Algorithm 4.1
to produce a set of Boolean polynomials S from the selected clauses.

(4) Computing a border basis. We call Algorithm 3.10 on the ouput of the previous step.
We restrict the sets of indeterminates of the Boolean ring to the indeterminates
actually appearing in the input polynomials. We do not apply FinalReduction.
Call the result S′.

(5) Polynomial filtration. We consider only the polynomials in S′ \ S of degree ≤ c.
Among them, we select polynomials with the smallest support. Let Q be the result.

(6) Converting polynomials to clauses. We convert these polynomials to clauses via the
(sparse) truth-table method described in Example 4.4. We buffer only the first d
clauses on an as-they-come basis. Call the result K.

(7) Sending the clauses. We send these clauses to the SAT solver and go to Step (1).
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Algebraic
solver

(4)←− S
(3)←− C ′

(2)←− C
(1)←−

(4)−→ S ′
(5)−→ Q

(6)−→ K
(7)−→

W
↓

SAT
solver

↓

Figure 4.1: The integration of an algebraic solver with a SAT solver.

First of all, let us prove that the integration is correct.

Proposition 4.21. The above integration of the solvers is correct.

Proof. Let c be a clause sended in Step (7). We have to show that S(W ∪{c}) = S(W ).
The inclusion “⊆” is trivial. Let us prove the inclusion “⊇” by contradiction.

Suppose that there exists a ∈ S(W ) such that a /∈ S(W∪{c}). That means a /∈ S({c}).
There exists a polynomial q ∈ Q in Step (5) such that Z({q}) = S({c}). Backtracking
the steps to Step (1) will get

a /∈ Z({q}) ⊇ Z(Q) ⊇ Z(S′) = Z(S) ⊇ S(C ′) ⊇ S(C) ⊇ S(W ).

The last inclusion follows form the fact that the conflict clauses are logical consequence
of the input formula W . The equality Z(S) = Z(S′) follows from 〈S〉 = 〈S′〉. Hence we
get a /∈ S(W ), which is the contradiction.

The integration can be used to find a model of an arbitrary CNF formula in the
DIMACS format (i.e., the standard format for SAT solvers). This option seems to be
effective when the input contains a rich algebraic structure, e.g., many XOR constraints.
Note that such benchmarks are quite common in cryptanalysis. Most SAT solvers do
not use the rich XOR structure hidden in modern cryptosystems (e.g., in ARX ciphers or
in permutation-substitution networks, etc.) at all. Thus an integration with the BBBA,
which naturally works with addition modulo 2, may come in handy.

In the following toy examples we illustrate the synergy of the BBBA with a resolution-
based SAT solver.

Example 4.22. Let f = 1 + x2 + x1x2 and g = 1 + x1 + x1x2 both from B2. It is
easy to verify that there exists no common F2-rational zero of {f, g}. Let us compute
f+g = x1+x2 in order to get rid of the leading term. We convert f (and f+g) into CNF
via the sparse method described in Example 4.4 and get

{
{X1, X2}, {X̄1, X2}, {X̄1, X̄2}

}(
and

{
{X1, X̄2}, {X̄1, X2}

})
. Resolution then yields {X1} and {X̄1}, and hence certifies

inconsistency. Note that the BBBA can find the element 1 as follows. Firstly, multiply
f + g by x1 and get x1 + x1x2. Secondly, interreduce the latter polynomial with g and
get 1. 4
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Let us see how the BBA can profit from intermediate results of a SAT solver. Assume
that a SAT solver finds out an assignment for one indeterminate. For the BBBA, this
translates to a new polynomial of the form xi + ai, where ai ∈ F2. Normally, the BBBA
will not use this information very efficiently, as the following example shows.

Example 4.23. Suppose that we are computing the Boolean border basis of an ideal
in B4 and that the SAT solver provides us with the insight that x1 = 0. Moreover,
assume that we are currently trying to simplify the polynomial x1x2x3x4 +x1x2x3 +x3.
In Algorithm 3.10 we have to wait for the result of two V (+) computations to eliminate
x1x2x3, and then one more to eliminate x1x2x3x4. However, a direct substitution of
x1 7→ 0 immediately shows x3 = 0, and by substituting x3 7→ 0, we can simplify other
polynomials. 4

Therefore, whenever the SAT solver discovers useful constraints, such as xi + ai = 0
or xi +xj = 0, it is better to perform the corresponding substitutions everywhere in the
BBBA and thus reduce the number of variables involved in the system. Next we sketch
two cases that are inconvenient for a SAT solver, but can be easier for Algorithm 3.10.

Firstly, if V contains two Boolean polynomials vi and vj having the same leading terms
and such that #(Supp(vi)∩Supp(vj)) is large enough, the Boolean polynomial vi+vj is
much simpler. In other words, addition in the BBBA helps us to derive new polynomials
efficiently. Because a standard SAT solver does not support the XOR operation, it will
tend to discover the clauses corresponding to vi + vj much later. Secondly, multiplying
by an indeterminate while computing V (+) may lead to lower degree and simpler poly-
nomials. For instance, by multiplying x1x2x3 + x2x3 + x1x3 + x1x2 + x2 + x3 + 1 by x1
we get only x1. In a SAT solver, this new information may not be discovered so quickly.

4.8 Design of the Communication

To combine the power of the SAT solver with the advanced reasoning of the BBBA, a
severe communication challenge has to be overcome. While it would be possible to create
a fully integrated BBBA-SAT hybrid solver, the maintenance of such a solver would be
difficult and the implementation of new features into either base solver challenging.
Therefore, a communication framework that allows the exchange of data between the
border basis and the SAT solver is developed instead. The design of this communication
layer is focused on two objectives.

(a) The overhead for the data transfer must be low.

(b) The base solvers should be modified as little as possible.

To achieve the first design goal, a shared memory communication approach is chosen.
By defining a shared memory region that is accessible to both solvers, large amounts of
data can be transmitted at extremely high speeds. To satisfy the second objective, the
communication is restricted to consist only of clauses. Furthermore, the shared memory
communication is implemented with the help of the Boost Interprocess Library [47].
This library allows different processes to access a common, shared memory region. Thus,
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the SAT solver and the BBBA can be executed independently and simply access the same
shared memory region.

The communication itself is combined into a handler class that performs the generation
of the shared memory region and the coordination and synchronization of the data access.
It furthermore provides a simple interface for the sending and receiving of clauses. The
handler class only needs to be instantiated by the solvers to gain access to the shared
memory region.

When the BBBA and the SAT solver are combined, there are two instances of the
shared memory manager that are communicating. Apart from the initialization of the
shared memory region that is performed at the start of the application, these instances
behave exactly in the same way. For simplicity, the two managers are referred to as m1

and m2 here. To allow for an efficient communication, each manager utilizes its own
shared memory area for outgoing clauses, o1 and o2. This enables a fast full duplex
communication, as each manager can send and receive at the same time.

When m1 is asked to transmit a clause to m2, it first stores the clause in a local
queue. The next clause of the local queue is transferred to the shared region o1 when
m2 indicates that it read the previously shared clause from that area. Once the clause
has been written to o1, m1 informs m2 that a new clause is available. The manager m2

then copies the clause from o1 to its own memory region and marks the clause as read.
Thus, the next clause in the queue of m1 can be transmitted.

To avoid any idle waiting in the background, the check for new clauses and the trans-
mission of the next clause are only performed when the solvers update their shared
memory handler.

4.9 Modifications of the SAT Solver

The SAT solver constantly generates new conflict clauses. The shear volume of conflict
clauses makes it unfeasible to share all of them with the BBBA. Instead, only conflict
clauses below a certain size threshold are transmitted. A new conflict clause is trans-
mitted immediately after it has been generated. This modification adds only a single
line of code to the solver.

Receiving new clauses is slightly more challenging because of the way clauses are
stored and considered in the solver antom [101]. For efficiency reasons, the first literal
of every clause that is not satisfied must be free (i.e., currently not assigned to a value).
Therefore, each new clause that is received from the BBBA is first sorted and then
added. Depending on the variable assignment that is currently under consideration by
the SAT solver, a new clause might, furthermore, be unsatisfied at the moment. In
this case, the solver backtracks until the clause is not unsatisfied anymore. Here the
new clause acts similar to a conflict clause and guides the solver away from unsatisfied
regions of the search space. The additional tasks that are required to handle a received
clause are placed into a new function. Thus, the main SAT solver code only needs to be
extended by a single line of code that checks for the arrival of new clauses.

The shared memory handler is updated once after every decision. This is sufficiently
often to receive any new clauses, but does not add any undue overhead to the solver.
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Overall, the SAT solver is modified only to a very small extent. Hence the solver can
be freely developed without worrying about complex dependencies. Similarly, it should
be comparatively easy to add the presented communication layer to a different SAT
solver, should the need arise.

4.10 Experiments

In this section we examine the efficiency of the several methods for the CNF to ANF
conversion and an integration of the BBBA with a SAT solver. All tests were executed
on a computing server having a 3.00 GHz Intel(R) Xeon(R) CPU E5-2623 v3 and a
total of 48 GB RAM. The block-conversion algorithm was prototypically implemented
in python 2.7 using the PolyBoRi library [17] integrated in Sage [110]. The timeout for
testing various conversions was set to 1500 seconds.

In order to compare conversion methods, we choose specific mid-size instances from
the following benchmark suites: the logical representations of the encryption of the
Small-scale AES cipher (ssAES) [46] and factoring of integers [14]. Instances of type
ssAES-a-b-c-d represent propositional formulae in CNF derived from the gate level cir-
cuit implementation of Small-scale AES with a rounds, a state matrix of size b× c and
d-bit words in each state cell. Instances of type fact-a-b represent the problem of factor-
ing the product a·b for two given primes a, b. Instances of type ssAES-2-2-4-fa represent
algebraic fault attacks on ssAES-10-2-2-4 with different faults injected (see [28]).

Table 4.1 provides information about the number of variables and the number of
clauses contained in the CNF instance, as well as the total number of linear, quadratic
and higher degree (i.e., greater than 2) polynomials produced by Algorithms 4.1 and 4.4
together with execution times. We use σ = DegRevLex and m = 2. The latter parameter
performs the best, because it does not create big blocks Bc in Algorithm 4.3 that are too
hard for the Gröbner basis computation. On the other hand, choosing m ≥ 3 does not
make sense in most examples, because the CNF instances usually contain many clauses
of length 3.

From the results in Table 4.1 we clearly see that the algebraic representation given by
Algorithm 4.4 produces lower degree polynomials than the one by Algorithm 4.1. While
Algorithm 4.1 usually produces only very few linear polynomials, the table shows that
Algorithm 4.4 tends to return enough linear polynomials to eliminate approximately one
third of all indeterminates. Moreover, we note that Algorithm 4.4 almost completely
avoided to produce polynomials of degree ≥ 3.

In our experiments, the computation of the reduced Gröbner bases of the conversions
of the block Bc did not pose problems. If necessary, one could calculate them in parallel.
Both algorithms need extra time for the setup of the Boolean rings. This could be a
problem for larger CNFs having thousands of variables. It can be overcome by defining
local Boolean rings for each Bc and then rewriting the local variables in Bc to their
global names. Note that # Var(Bc) tends to be much smaller than # Var(C). Moreover,
caching of the standard representations of short clauses is possible. Polynomials of type∏`
i=1(xi + ai) can be precomputed and stored in ANF for small values of `. Then the

corresponding values ai ∈ F2 are substituted for a given clause.
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Table 4.1: Number of converted polynomials by degree

Instance CNF Algorithm 4.1 Algorithm 4.4
#vars #cl. #l. #q. #h. sec #l. #q. #h. sec

ssAES-2-1-2-4 237 701 1 360 340 0.01 70 453 0 2.16
ssAES-2-1-4-4 412 1218 1 598 619 0.02 132 746 0 5.43
ssAES-2-2-2-4 526 1615 1 716 898 0.05 201 882 0 8.56
ssAES-2-4-1-4 669 2065 1 960 1104 0.06 241 1190 0 13.55
ssAES-2-2-4-4 935 2883 1 1196 1686 0.08 375 1491 0 23.92
ssAES-10-1-2-4 1081 3361 1 1792 1568 0.09 337 2194 1 40.22
ssAES-2-4-2-4 1157 3652 1 1434 2217 0.11 501 1778 0 36.16
ssAES-10-1-4-4 1862 5824 1 2986 2837 0.15 604 3692 0 106.17
ssAES-2-4-4-4 2077 6596 1 2394 4201 0.25 957 2978 0 108.70
ssAES-10-2-2-4 2441 7841 1 3584 4256 0.24 947 4406 0 173.31
ssAES-10-2-4-4 4289 13904 1 5986 7917 0.57 1785 7353 0 521.28
ssAES-10-4-1-4 3149 10065 1 4800 5264 0.33 1149 5913 0 308.90
ssAES-2-1-2-8 4664 13974 1 9102 4871 0.59 343 12971 0 603.53
fact-151-283 271 1333 2 250 1081 0.02 154 361 2 3.62
fact-59-1009 328 1640 2 294 1344 0.03 184 447 2 5.31
fact-373-929 328 1640 2 294 1344 0.03 170 487 2 5.28
fact-1777-491 403 2029 2 354 1673 0.05 202 611 2 7.94
fact-2393-3371 466 2380 2 400 1978 0.07 224 730 2 10.72
fact-9601-10067 638 3296 2 532 2762 0.06 288 1056 2 19.63
fact-12601-18701 745 3853 2 616 3235 0.08 341 1226 2 27.17
fact-59441-62201 826 4312 2 676 3634 0.09 365 1395 2 33.33
fact-81551-100057 947 4945 2 770 4173 0.14 407 1633 2 45.08
fact-583909-600203 1280 6784 2 1010 5772 0.18 527 2271 2 104.36
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.13 694 2704 197 78.31
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.12 694 2705 196 77.89
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.12 694 2707 194 77.52
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.10 738 2515 182 77.38
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.10 696 2704 195 77.81
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.10 696 2700 199 77.51
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.13 731 2555 180 77.45
ssAES-2-2-4-fa 1310 4510 73 1952 2485 0.13 696 2702 197 77.28

Proposition 4.14 states that Algorithm 4.4 does simple logical reasoning, e.g., it ap-
plies the resolution rule to certain subformulae. Thus it tends to produce lower degree
polynomials. One possible enhancement would be to run a SAT solver on a given set of
clauses C for a while, and then to apply Algorithm 4.4 on C together with the newly
found clauses (e.g., conflict clauses). We believe that this would produce even more
low-degree polynomials.

To evaluate the combination of the BBBA and antom implemented in C++, two differ-
ent kinds of experiments have been performed. We note here that antom is deterministic,
i.e. it gives the same result on the same input for each run.

The first set of experiments is meant to showcase the general usefulness of the in-
formation that is derived by the BBBA for the SAT solver. Let C be an input set of
clauses for antom. We convert C into a set of Boolean polynomials S via the standard
conversion. Next we run the BBBA for 5 minutes and then stop the execution. We
select one linear polynomial f from its output manually and convert f back to CNF via
the sparse method. Let C ′ be the resulting set of clauses. We run antom twice: once
with the input C and then with the input C ∪ C ′. The timings in Table 4.2 illustrates
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the speed-up obtained by manual section of extra information provided by the BBBA.

Table 4.2: Comparison of timings of antom on the Small Scale AES instances in [46]
without vs with extra clauses corresponding to a linear polynomial.

CNF instances antom antom + lin. poly

ssAES-2-1-2-8 11.80 3.50
ssAES-2-2-1-8 111.59 88.15
ssAES-2-2-4-4 196.06 21.76
ssAES-1-2-4-8 666.93 209.11
ssAES-2-4-2-4 3997.91 1432.24

For the second set of experiments, Algorithm 3.10 and the integration framework with
antom in C++ as described in Section 4.7 were used. In Table 4.3 we present the timings
of this automation on various benchmarks. Instances fact-x-y were generated by [14].
They encode the factoring problem for x · y. The other benchmarks encode algebraic
attacks or algebraic fault attacks on the cryptosystems Small Scale AES (ssAES) and
LED-64. For the full description of these benchmarks, we refer to [28, 46]. The timeout
limit was set to 2500 seconds.

During our experiments we found examples where the integration was slower than the
SAT solver by itself. In practice, we therefore suggest running the SAT solver alone on
one machine and the integration in parallel on another machine. In this way, we cannot
be “unlucky” and we will always profit from the best timings. This is particularly
relevant in cryptanalytic scenarios where the solution of an instance implies breaking a
cryptosystem.

Notice that the timings of the integration of the two solvers are sometimes not stable,
i.e. two timings for the same instance may differ substantially. These differences occur
because new clauses are added at different points in time.

Let us discuss the positive effect of a new clause coming from algebraic reasoning on
a SAT solver. There are these basic scenarios.

(a) The new clause is not satisfied by the partial model constructed by the SAT solver,
and hence the SAT solver is forced to backtrack.

(b) The new clause eliminates a large portion of assignments, and hence these assign-
ments do not have to be considered.

(c) The new clause effects the statistics carried out by the SAT solver. That is why a
different decision is chosen in the next level of branching by the heuristics.

On one hand, scenarios (a) and (b) have a positive effect on solving. On the other hand,
scenario (c) may affect the integration in both positive and negative ways, depending
on the state of the SAT solver and the example under consideration.

We have extended our experiments to the SAT competition benchmarks (see [8, 9]
for the benchmark descriptions). The results are shown in Figure 4.2. We choose
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Table 4.3: Timings of the integration of the BBBA with antom vs vanilla antom for
various SAT instances

CNF instances antom BBBA + antom

fact-81551-100057 0.23 0.22
ssAES-2-2-4faultInNibble1with1faultyBits 3.12 2.35
fact-3981643-3981641 7.83 6.91
fact-2190823-2190821 19.53 74.25
fact-7367627-7367621 29.18 146.13
fact-12619463-12619427 40.43 101.34
ssAES-4-4-4faultInNibble1with4faultyBits 41.15 55.87
LED-64faultInNibble1with1faultyBits 45.70 55.38
ssAES-4-4-4faultInNibble1with1faultyBits 49.02 48.61
fact-5160011-5160007 63.98 55.47
fact-5621809-5621809 81.54 110.07
fact-4752977-4752949 207.18 189.58
fact-5308571-5308553 282.91 37.22
ssAES-2-2-4-4algebraicCNF 268.70 235.39
fact-49987277-49999553 337.58 45.29
fact-12598967-12598951 441.88 78.60
fact-4593761-4593737 527.22 10.11
fact-5287813-5287801 605.76 102.48
fact-5620907-5620907 653.63 5.04
fact-10000079-10000019 > 1200 760.41

the parameters (a, b, c, d) = (40, 10, 3, 20). On the x-axis we put the names of the CNF
instances, and on the y-axis the CPU timings are displayed. We focused on the examples
where the integration outperforms the vanilla antom. On one hand, there exist cases
where the integration is slower. On the other hand, we found 8 instances, for which the
integration finished before the timeout, whereas the vanilla antom did not. (These cases
are not displayed in the figure.)

The filtration techniques described in Section 4.7, as well as the integration itself, are
still preliminary. Our next goal in the next chapter is to develop deeper understanding
of the synergy of both solvers. The main difficulty is that SAT solvers use various
heuristics for literal assignment and for the choice of the clause to work on next. This
makes it very hard to analyze which extra clauses from the BBBA affect the timings
most. Nonetheless, our results show that the additional information from the BBBA
may already greatly increase the speed of the SAT solver.
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Figure 4.2: Measuring CPU timings of antom and the antom integration with the BBBA
tested on various CNF benchmarks
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Chapter 5

Proof Systems and SRES

Motivation In this chapter, we look into abstract concepts how algebraic or logic
solvers derive a solution of a search problem, or how they certify unsatisfiability. On
one hand, a solver can find a single solution of an instance “by luck”, e.g. a SAT solver
(depending on a branching heuristic) chooses the “right” order of guesses. On the other
hand, in the case of an unsatisfiable problem, a solver has to systematically certify that
all assignments do not fit the initial constraints, e.g. by deriving a semantic implication
that is clearly unsatisfiable. Thus we focus on certifying the unsatisfiability because it
is very often more difficult.

Solvers use various rules of inference how to obtain “new information” and work with
different syntaxes that determine their data structures. A proof system is a theoretical
concept that helps us understand the capability of the underlying syntax and its rules
of inference.

Because individual proof systems may have some weaknesses, it is reasonable to com-
bine them into stronger ones. In this chapter we study a combination of resolution and
polynomial calculus. In Sect. 4.3 we remarked that a clause c = {L1, . . . , Lm} with
literals Li corresponds to the polynomial f = `1 · · · `m where `i = xi + 1 for Li = Xi

and `i = xi for Li = X̄i. We generalize this concept, and we allow `1, . . . , `m to be
arbitrary linear polynomials over F2. By translating a linear polynomial `i back to logic,
Li becomes a XOR clause, and the product f becomes a linear clause.

Using this terminology, that we later call linearly split polynomials, we taylor a special
rule of inference, called s-resolution (sres), and a new proof system SRES with the
following properties.

• The rule sres generalizes the classical resolution known from logic (see Defini-
tion 2.24). More precisely, resolution corresponds to s-resolution with s = 1 when
clauses are converted by Algorithm 4.1.

• The rule sres mimics the construction of S-polynomials (see Definition 2.22) for
polynomials that are products of linear polynomials, i.e. sres is taylored to cancel
the leading terms.

• The rule sres (together with other rules in SRES) allows Gaußian elimination from
linear algebra to be incorporated in the proofs.

Because of its strong algebraic background and the above facts, we call sres an algebraic
extension of resolution. Our main motivation for this chapter is to lift up the following
concepts known from SAT solving of sets of clauses to solving of set of linear clauses.

• Syntax: clauses → linear clauses.
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• Transformations: resolution → s-resolution.

• Proof systems: the resolution proof system RES → the combined proof system
SRES.

• Closure algorithms: the resolution closure algorithm → the SRES closure algo-
rithm.

• Constraint propagation: Boolean constraint propagation → Gaußian constraint
propagation.

• Solvers: DPLL-based SAT solvers using RES → DPLL-based solvers using SRES.

Related work Let us mention some previous contributions to combining the resolution
calculus and the polynomial calculus into a new proof system, and compare them to s-
resolution. The proof system RES-LIN in [61] admits linear clauses, which correspond to
our linearly split polynomials, but uses only 1-resolution steps, whereas the proof system
in [13] works only for XOR clauses (i.e., linear Boolean polynomials) and relies on Gaußian
elimination. Moreover, the proof system RLIN in [96] applies a more general addition
of linear factors than s-resolution and does not target the main idea of S-polynomials,
namely cancellation of leading terms. Apparently, these proof systems have not led to
efficient implementations. For a recent account of the theory on proof complexity, we
refer the reader to [71]. This chapter is based on [55].

Structure and contents The chapter is organized as follows. In Section 5.1 we recall
basic definitions regarding proof systems, and we provide various examples of proof
systems coming from logic and algebra. In Section 5.2 we define linearly split polynomials
and the proof system SRES which incorporates and extends the resolution proof system.
Moreover, we establish a relation with other combined systems that use resolution and
polynomial calculus. In particular, we show that SRES simulates the proof system RLIN
defined in [61,96].

In Section 5.3 we prove that the SRES proof system is implicationally and refutation-
ally complete, and in Sect. 5.4 we give a few proofs in SRES that illustrate some advan-
tages over non-combined proof systems. In Section 5.5 we describe concrete algorithms
that searches for SRES-refutation proofs of inconsistent systems based on computing
closure or DPLL. In Sect. 5.7 we conclude this chapter with some experiments that
compare our implementation of the above mentioned solvers to SAT solvers.

5.1 Preliminaries

Let us start the section with the definition of a proof system known from mathematical
logic.

Definition 5.1. A proof system, sometimes called a Hilbert system or Hilbert
calculus, consists of
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• a syntax, i.e. a set of rules which determine the set of well-formed formulas of the
system,

• a finite set of axioms, i.e. a set of formulas which are assumed to be tautologies,

• a finite set of sound rules of inference.

The previous definition is due to Hilbert and Frege. In the field of proof complexity, a
Frege proof system (as in in [71, Ch. 2]) is defined as a polynomial time proof-verification
algorithm, i.e. for all propositional formulas ϕ the following holds: ϕ is unsatisfiable if
and only if there exists a string (proof) p such that the algorithm accepts the input
(p, ϕ).

Next we recall the definition of a proof.

Definition 5.2. Let PS be a proof system. Let F1, . . . , Fm, G1, . . . , Gk, H be proposi-
tional formulas.

(a) A PS-proof of a formula H from the initial premises F1, . . . , Fm in the proof
system PS is a sequence of formulas π = (G1, . . . , Gk) such that Gk = H and each
of the formulas Gi is of one of the following forms.

(i) Gi ∈ {F1, . . . , Fm}
(ii) Gi is one of the axioms of PS.

(iii) Gi is obtained from some formulas Gj with j < i by applying one of the rules
of inference of the proof system PS.

(b) In the setting of (a), the number k is called the length of the proof π, and the
formula Gi is called a line in the proof π.

(c) In the setting of (a), if H is equal to a contradiction ⊥, then the proof π is called a
PS-refutation of F1, . . . , Fm.

(d) If a formula H has a PS-proof from the premises F1, . . . , Fm, we write F1, . . . , Fm `PS
H, or simply F1, . . . , Fm ` H if no confusion can arise.

Sometimes, we form proofs in PS as directed acyclic graphs instead of sequences. The
vertices are labeled by formulas used in the proof, and the edges (Gi1 , G), . . . , (Gij , G)
denote the fact that G is derived from Gi1 , . . . , Gij by applying one of the rules of
inference of PS, i.e. we have Gi1 , . . . , Gij `PS G. By a tree-like proof, we mean the proof
which corresponds to a tree.

The following definition provides further useful properties of proof systems. They are
motivated by the question whether any semantic implication is provable in a given proof
system.

Definition 5.3. (a) A proof system PS is called implicationally complete if for every
formula H and every set of formulas {F1, . . . , Fm} such that we have F1, . . . , Fm |=
H, we have F1, . . . , Fm `PS H.
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(b) A proof system PS is called refutationally complete if for every inconsistent set
of formulas {F1, . . . , Fm}, i.e. for F1, . . . , Fm |= ⊥, we have F1, . . . , Fm `PS ⊥, where
the symbol “⊥” denotes a contradiction.

In the language of proof complexity, Definition 5.1 is similar to Frege systems with two
important modifications. Firstly, a Frege system works with formulas built in an arbi-
trary way by a (functionally complete) set of connectives, e.g. not only with CNFs in the
case of the connectives “∧” and “∨”. Secondly, a Frege system is always implicationally
complete.

When refuting a Boolean formula, we ask two fundamental questions.

Problem: Existence and computability of proofs
Input: A Boolean formula ϕ, a proof system PS that admits ϕ.
Question 1: Is there a “short, narrow” PS-refutation of ϕ?
Question 2: If the answer to Question 1 is positive,

find a “short, narrow” PS-refutation of ϕ.

Without going too much into details, by “short” proofs we mean proofs that have
polynomial length w.r.t. the size of the input formula. By “narrow” proofs we mean
proofs that have polynomial size of their lines w.r.t. the size of the input formula. For
instance, if for certain class of formulas there are no “short” proofs in PS, there is no way
how to design practical search algorithms for these inputs using the rules of inference
of PS. Conversely, if such a “short” proof exists, there is a chance to construct effective
search algorithms. That is why theoretical results in proof complexity are very important
for practical solving methods.

In the following we recall some basic proof systems from logic and algebra. We start
with logic first.

Definition 5.4. The resolution proof system RES is defined as follows.

• The proof system RES admits sets of clauses.

• (No axiom schemata.)

• Its rules of inference is

c ∪ {Xi} c′ ∪ {X̄i}

c ∪ c′
(res)

where c, c′ are clauses and Xi is a logical variable such that neither Xi nor X̄i are
contained in c ∪ c′.

The next propositions collect some useful facts about the system RES.

Proposition 5.5. (a) The proof system RES is refutationally complete.

(b) The proof system RES is not implicationally complete.
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(c) Assume that the algorithm DPLL (described in Algorithm 2.6) returns False on a
set of clauses C. Then there exists a tree-like RES-refutation of C whose length is
at most the number of decisions in the run of DPLL.

Claim (b) is easy to prove by a counterexample. Let c′ = {X1, X2} and c = {X1}.
Then c |= c′, but c′ can not be derived by resolution. Notice that Claim (c) implies
Claim (a) because DPLL returns False if and only if S(C) = ∅. Instead of giving a
complete proof of Claim (c), we illustrate how to construct a RES-refutation from a
DPLL decision tree when BCP (i.e. Algorithm 2.4) is not used. The full proof can be
found in [100, Prop. 2.3]. Claim (a) is also proven in [27, Thm. 4.1.5].

Example 5.6. Let C =
{
{X1, X2, X3}, {X̄1, X2, X3}, {X2, X̄3}, {X̄2}

}
. The following

decision tree illustrates a run of DPLL (without BCP) on C. Its nodes are branching
variables. The edge going left (or right) from the node X means assigning X = False

(or X = True). The leaves contain a clause in C that is not satisfied by the assignment
along the path going to that leave.

X1

X2

{X̄2}X3

{X2, X̄3}{X̄1, X2, X3}

X2

{X̄2}X3

{X2, X̄3}{X1, X2, X3}

The resolution refutation goes then backwards from leaves to the root of the tree. The
resolving variable is equal to the branching variable. The completed resolution tree is
given below.

∅

X̄1

{X̄2}{X̄1, X2}

{X2, X̄3}{X̄1, X2, X3}

X1

{X̄2}{X1, X2}

{X2, X̄3}{X1, X2, X3}

Notice that BCP and multiple occurrences of the same literal in a clause can be
handled similarly by the rule res as well. 4

The connection between DPLL and RES is indeed very interesting. Firstly, DPLL
is just tree-like resolution by Proposition 5.5(c). Thus tree-like resolution is not very
efficient, e.g. each derived clause is used only once, which means DPLL has to derive the
same clause every time it is used. In contradiction, in [100, Ch. 4] it is shown that CDCL
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with restarts corresponds to general resolution. However, there exist CNF formulae such
that any RES-refutation requires exponentially many lines.

One canonical class of such formulas are so-called pigeonhole formulas which encode
the problem of placing n pigeons into n + 1 holes such that there is no hole with more
than one pigeon. Equivalently, the problem states the fact that there is no injection
{1, . . . , n+1} → {1, . . . , n}. Another class of examples which are hard for resolution are
so-called Tseitin formulas. Tseitin formulas encode inconsistent linear systems based
on the task of finding vertex coloring of connected graphs. For further details on hard
formulas w.r.t. resolution, see [76].

Next we enhance the system RES with an extension rule. It allows new proofs which
can be viewed as shortcuts in RES-proofs.

Definition 5.7. The proof system ERES is defined as follows.

• The proof system ERES shares the same syntax with RES.

• (No axiom schemata.)

• Its rules of inference are res and the extension rule def (with no premises) defined
as follows.

C ′
(def)

where C ′ is a set of clauses that encodes the equivalence Y ⇔ F for an arbitrary
formula F and a fresh logical variable Y , i.e. Y does not appear in F (or in the
previous definitions or in the input formula).

A ERES-proof can be divided into two stages. Firstly, the input set of clauses C is
extended to C∗ ⊇ C by applying def, and then the proof from C∗ is derived as in RES.
Tseitin proposed to use C ′ =

{
{Ȳ , X̄1, X̄2}, {Y,X1}, {Y,X2}

}
to encode the formula

Y ⇔ X̄1 ∨ X̄2 (e.g., see [74]). That means that we are allowed to add definitions of the
form Y := X̄1 ∨ X̄2. Even this simple definition makes the resulting system ERES very
powerful, e.g. classes of formulas that would require very “long” ERES-proofs are not
known. Unfortunately, there is no practical SAT algorithm based on ERES yet. Some
attempts in this direction can be found in [5].

Next we discuss algebraic proof systems.

Definition 5.8. Polynomial calculus PC, sometimes called the Gröbner proof sys-
tem, is defined as follows.

• The proof system PC admits polynomials f where f ∈ F2[x1, . . . , xn].

• Its axioms are the Boolean axioms x2i + xi for i = 1, . . . , n.
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• Its rules of inference are

f g

f + g
(pca) and

f

xif
(pcm)

where f, g ∈ F2[x1, . . . , xn] and xi is an indeterminate.

Note that we have to adjust Definition 2.17 for the algebraic setting, i.e. we say that
polynomials f1, . . . , fm ∈ F2[x1, . . . , xn] semantically imply a polynomial g ∈ F2[x1, . . . ,
xn] if Z(f1, . . . , fm) ⊆ Z(g). In this case we write f1, . . . , fm |= g. Some useful facts
about PC are given in the next proposition.

Proposition 5.9. Let F = 〈x21 + x1, . . . , x
2
n + xn〉.

(a) PC is implicationally complete.

(b) PC is refutationally complete.

(c) Let S be a set of polynomials in F2[x1, . . . , xn]. Let σ be a term ordering. A reduced
σ-Gröbner basis of 〈S ∪F 〉 is equal to {1} if and only if Z(S) = ∅. Moreover, there
exists a PC-proof for any polynomial in the output of Algorithm 2.1 executed on the
input S.

Proof. Let us prove Claim (a). Let f1, . . . , fm, g ∈ F2[x1, . . . , xn] such that f1, . . . , fm |=
g. From Proposition 2.14 it follows that g ∈ 〈f1, . . . , fm〉, i.e. g can be derived from pca
and pcm starting from f1, . . . , fm. Claim (b) follows from Claim (a). The proof of Claim
(c) follows from [22, Sect. 2.2.].

A classical way how to use the rules of inference of PC for a set of clauses is via the
conversions described in Algorithms 4.1 and 4.2. In the case of using Algorithm 4.2, we
call the resulting proof system PCR (polynomial calculus resolution).

Definition 5.10. Let P = F2[x1, . . . , xn]. A Nullstellensatz proof of a polynomial
h ∈ P from polynomials f1, . . . , fm ∈ P is a tuple of polynomials π = (p1, . . . , pm,
r1, . . . , rn) ∈ Pm+n such that the equation

m∑
i=1

pifi +
n∑
j=1

rj(x
2
j + xj) = h

holds in P . The degree of the proof π is defined as

max
{

max
i

(
deg(pi) + deg(fi)

)
, max

j

(
deg(rj) + 2

)}
.
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5.2 An Algebraic Extension of Resolution

In this section we consider Boolean polynomials which are products of linear poly-
nomials. For instance, such polynomials emerge naturally from Algorithm 4.1. We
generalize the concept to products of arbitrary linear polynomials (i.e. not only of the
form xi or xi + 1). Algebraic proof systems such as PC work with polynomials that are
in the expanded form. However, expanding long products of polynomials is very costly.

Using Algorithm 4.3, we can identify blocks that correspond to linear polynomials.
Instead of reducing the blocks as in Algorithm 4.4, we can substitute the linear poly-
nomials into the remaining polynomials to get a compact encoding as illustrated in the
next example.

Example 5.11. Consider the set of clauses C = {c1, . . . , c7} with c1 = {X̄1, X2, X3},
c2 = {X1, X̄2, X3}, c3 = {X1, X2, X̄3}, c4 = {X̄1, X̄2, X̄3}, c5 = {X̄4, X5}, c6 =
{X4, X̄5}, c7 = {X1, X4}. Using Algorithm 4.3 with m = 2, the 2-blocks B1 =
{c1, c2, c3, c4}, B2 = {c5, c6}, and B3 = {c7} are constructed. The block B1 (or the
block B2) corresponds to x1 + x2 + x3 (or x4 + x5). The clause c7 has the standard
algebraic representation (x1 + 1)(x4 + 1). The final encoding of C is given by the single
polynomial (x2 + x3 + 1)(x5 + 1) and by two relations for the “free” indeterminates
x1 = x2 + x3 and x4 = x5. 4

More precisely, our main data structure is the following representation of products of
linear Boolean polynomials.

Definition 5.12. Let Ln be the set of all linear polynomials in Bn, i.e., the set of all
polynomials of degree ≤ 1. (Here we use deg(0) = −1.)

(a) For a Boolean polynomial h ∈ Bn, we say that h splits linearly, or that h is a
linearly split polynomial, if h = `1 · · · `k with linear polynomials `i ∈ Ln such
that `i is not divisible by `j and such that `i 6= `j + 1 for i, j ∈ {1, . . . , k} with i 6= j.

(b) The set of all Boolean polynomials in Bn which splits linearly is denoted by Sn.

(c) For h ∈ Sn which splits linearly into h = `1 · · · `k, the set H = {`1, . . . , `k} is called
the set of linear factors of h.

(d) In the setting of (c), the number #H = deg(h) is also called the degree of H.

(e) For ` ∈ Ln, we let Var(`) be the set of indeterminates occurring in `. In the setting
of (c), we then call size(H) = # Var(`1) + · · ·+ # Var(`k) the size of H.

Notice that we do not count the number of terms in the support of an expanded
linearly split polynomial, since we never multiply the factors out. An arbitrary product
of linear Boolean polynomials can be reduced to a linearly split one, since we have `2 = `
and `(`+ 1) = 0 for ` ∈ Ln. For instance, h = x21 · 1 simplifies to h = x1.

In the next definition, we define a linear clause which corresponds to a clause where
literals are substituted by linear XORs.
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5.2 An Algebraic Extension of Resolution

Definition 5.13. (a) A Boolean formula L1,1 ⊕ · · · ⊕ L1,n1 with literals Li,j is called a
XOR clause.

(b) A Boolean formula which is a disjunction of XOR clauses, i.e. which is of form (L1,1⊕
· · · ⊕ L1,n1) ∨ · · · ∨ (L1,1 ⊕ · · · ⊕ L1,nk

) with literals Li,j , is called a linear clause.

Throughout this chapter we consider the obvious correspondences between the follow-
ing types of objects, where `1, . . . , `k ∈ Ln.

(C1) A linearly split polynomial h =
∏k
i=1 `i with `i ∈ Ln.

(C2) A set of linear polynomials H = {`1, . . . , `k} ⊆ Ln.

(C3) A linear clause (`1+1)∨· · ·∨(`k+1), where the linear polynomials `i are interpreted
as XOR clauses.

To simplify the notation, we view the sets in (C2) as polynomials in (C1), e.g., we
speak of zeros of H instead of zeros of h. From the propositional logic point of view,
a linearly split polynomial thus corresponds to a disjunction of a XOR of literals. The
notion of linear clauses has been considered for instance in [61,96].

Next we give examples of the above correspondence.

Example 5.14. (a) Let H = {x1 + x2 + 1, x1 + x3} ⊆ L3. Then h = (x1 + x2 + 1)
(x1 + x3) = x1x3 + x1x2 + x2x3 + x3, and H (or h) corresponds to the propositional
logic formula

ϕ = (X1 ⊕X2) ∨ (X1 ⊕X3 ⊕ 1).

(b) In B4, consider the linearly split polynomial h = (x1 + 1)(x2)(x3 + x4 + 1). Clearly,
this polynomial is an algebraic representation of the propositional logical formula
ϕ = X1 ∨ X̄2 ∨ (X3 ⊕X4). 4

Furthermore, we observe that two different subsets in (C2) may represent the same
polynomial, as the following example shows.

Example 5.15. Consider the sets of linear polynomials {x3, x2 + x3, x1 + x3 + 1}
and {x3, x1 + x2, x1 + x3 + 1} as in (C2). Then we have x3(x2 + x3)(x1 + x3 + 1) =
x3(x1 + x2)(x1 + x3 + 1) in B3, i.e. the corresponding polynomials in (C1) agree. 4

Next we define a new version of the classical resolution rule for linearly split polyno-
mials. Notice that the derived polynomial remains inside the set Sn of products of linear
Boolean polynomials.

Definition 5.16. Let s ∈ N+, let `1, . . . , `s ∈ Ln, and let G, G̃ ⊆ Ln be the sets of linear
factors of g, g̃ ∈ Sn, respectively. We assume that `i, `i + 1 /∈ G ∪ G̃ for i = 1, . . . , s.

(a) The rule of inference sres defined by⋃s
i=1{`i} ∪G

⋃s
i=1{`i + 1} ∪ G̃⋃s−1

i=1{`i + `i+1 + 1} ∪G ∪ G̃
(sres)

is called s-resolution. (For s = 1, we let
⋃s−1
i=1{`i + `i+1 + 1} = ∅.)
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(b) In the setting of (a), the derived set of polynomials is called the s-resolvent of⋃s
i=1{`i} ∪G and

⋃s
i=1{`i + 1} ∪ G̃.

(c) Let f =
∏s
i=1 `i and f̃ =

∏s
i=1(`i + 1). Then the linearly split polynomial h =

lcm(g, g̃) ·
∏s−1
i=1 (`i + `i + 1) is called an s-resolvent of fg and f̃ g̃.

For s ≥ 3, the s-resolution rule depends on the numbering of the linear polynomials.
2-resolvents are unique because there is only one way how to form the linear polynomial
`1 + `2 + 1. However, considered as a Boolean polynomial, the s-resolvent is uniquely
determined. The next example is a case in point.

Example 5.17. Resolving two sets F = {x1 + 1, x1 + x3, x1 + x2 + 1, x2 + x3 + 1} and
G = {x1, x1 + x3 + 1, x1 + x2, x2 + x3} with the numbering `1 = x1 + 1, `2 = x1 + x3,
`3 = x1+x2+1, `4 = x2+x3+1 yields the 4-resolvent R1 = {x3, x2+x3, x1+x3+1}. If
we swap the last two polynomials in G, 4-resolution with the numbering `1 = x1+1, `2 =
x1+x3, `4 = x1+x2+1, `3 = x2+x3+1 yields R2 = {x3, x1+x2, x1+x3+1}. Both R1

and R2 correspond to the same Boolean polynomial, as we saw in Example 5.15. 4

The smaller degree is obtained by a rule of inference, the better. Note that we take
the union of s− 1 elements in Definition 5.16(a). Thus the result can shrink depending
on s and G ∪ G̃. Clearly, the set G ∪ G̃ is the set of linear factors of lcm(g, g̃). The
s-resolution inference rule can be justified as follows.

Proposition 5.18. In the setting of Definition 5.16, let f =
∏s
i=1 `i and f̃ =

∏s
i=1

(`i + 1).

(a) We have
∏s
i=1(`i) +

∏s
i=1(`i + 1) =

∏s−1
i=1 (`i + `i+1 + 1).

(b) The set
⋃s−1
i=1{`i + `i+1 + 1}∪G∪ G̃ is the set of linear factors of (f + f̃) · lcm(g, g̃).

Proof. Let us prove Claim (a) by induction on s. The equality clearly holds for s = 1,
where the empty product is 1, as usual. Assuming the equality to hold for s, we now
prove it for s+ 1. We have

E =
s∏
i=1

(`i + `i+1 + 1) =

(
s−1∏
i=1

(`i + `i+1 + 1)

)
· (`s + `s+1 + 1).

The induction hypothesis yields E =
(∏s

i=1(`i) +
∏s
i=1(`i + 1)

)
· (`s + `s+1 + 1). Now

we multiply the right-hand side and use `2s = `s and `s(`s + 1) = 0 in Bn. We obtain

E = `s
s∏
i=1

(`i) + `s
s∏
i=1

(`i + 1) + `s+1

s∏
i=1

(`i) + `s+1

s∏
i=1

(`i + 1) +
s∏
i=1

(`i) +
s∏
i=1

(`i + 1)

= 2 ·
s∏
i=1

(`i) +
s+1∏
i=1

(`i) + `s+1

s∏
i=1

(`i + 1) +
s∏
i=1

(`i + 1)

=
s+1∏
i=1

(`i) + (`s+1 + 1)
s∏
i=1

(`i + 1).

This completes the proof of (a). Claim (b) follows immediately from (a).
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The next corollary shows that we can think of 1-resolution as an ordinary resolution
rule known from logic.

Corollary 5.19. Let s ∈ N+, and let h ∈ Bn be an s-resolvent of fg and f̃ g̃ as in
Definition 5.16(c).

(a) The s-resolution rule is sound, i.e., we have Z(h) ⊇ Z(fg) ∩ Z(f̃ g̃).

(b) Let s = 1, and let C, C̃, and D be the sets of clauses which are the standard algebraic
representations given by Algorithm 4.1 of fg, f̃ g̃ and h, respectively. Then D is the
resolvent of C and C̃ in the usual sense of propositional logic.

Proof. To show (a), we note that, by part (b) of Proposition 5.18, we have h = lcm(g, g̃)·
(f + f̃) = lcm(g, g̃) · fg + lcm(g, g̃) · f̃ g̃ in Bn. Hence we have Z(h) ⊇ Z(〈fg, f̃ g̃〉) =
Z(fg) ∩ Z(f̃ g̃).

Claim (b) is an immediate consequence of the definitions.

Notice that Proposition 5.18 shows that (f + f̃) · lcm(g, g̃) can be derived from fg and
f̃ g̃ by polynomial calculus. Thus s-resolution can be viewed a special case of polynomial
calculus. The following example indicates why s-resolution with s ≥ 2 is useful.

Example 5.20. Consider the linearly split polynomials f = x1x2 and g = (x1+1)(x2+1)
in S2. If we apply 1-resolution with `1 = x1 to f and g, we get the resolvent h = 0,
which does not provide additional information. However, 2-resolution yields the linear
polynomial h = x1 + x2 + 1. Notice that the degree of the 2-resolvent is one, whereas
the degree of the original polynomials is two. 4

Note that the constraint x1 = x2 + 1 in Example 5.20 can be found and used by a
SAT solver in the preprocessing of the clauses {X̄1, X̄2}, {X1, X2} by inspecting strongly
connected components (see [17, Ch. 12.2]). Example 5.20 can be generalized to `1`2,
(`1 + 1)(`2 + 1) `sres `1 + `2 + 1 with `1, `2 ∈ Ln. However, the constraint given by this
s-resolvent is not easy to detect using a SAT solver when the Boolean polynomials `1`2
and (`1 + 1)(`2 + 1) are encoded in CNF.

Now we are able to define a new proof system which uses s-resolution. We always
assume that sets of linear polynomials do not contain any duplicities, i.e. the duplicities
are erased after an application of inference rules.

Definition 5.21. The proof system SRES is defined by the following parts.

• The proof system SRES admits finite subsets of Ln.

• The axioms are the Boolean axioms {xi, xi + 1} for i = 1, . . . , n.

• The rules of inference consist of s-resolution sres (for various s ∈ N+) and the
following weakening rule weak.

H

H ∪ {`}
(weak)

for H ⊆ Ln and ` ∈ Ln.

99



Chapter 5 Proof Systems and SRES

Since we trivially have H |= H ∪ {`}, the proof system SRES is correct with respect
to semantic implication. Let us note that the Boolean axioms immediately imply the
following remark.

Remark 5.22. By applying 2-resolution to the axioms {xi, xi + 1} and {xi + 1, xi}, we
obtain that {0} is a tautology in the proof system SRES.

The proof system SRES is not the only one that operates with linearly split polynomials
(and thus linear clauses).

Definition 5.23. The proof system RLIN is defined by the following parts.

• The proof system RLIN admits finite subsets of Ln.

• The axioms are the Boolean axioms {xi, xi + 1} for i = 1, . . . , n.

• The rules of inference consist of the weakening rule weak and the addition rule
add.

F ∪ {`1} H ∪ {`2}

F ∪H ∪ {`1 + `2}
(add)

for `1, `2 ∈ Ln.

We conclude the section with a few comments on the relationship between SRES and
RLIN. Firstly, the rule sres is taylored in a way such that the leading terms cancel. This
can be viewed as a generalization of the S-polynomials from Gröbner basis theory for
linearly split polynomials. The rule add cancels `1 + `2 if and only if `1 = `2 + 1 which is
the setting of our 1-resolution. Secondly, the sres rule, unlike add, is capable of inferring
more than one linear factor at once (using s-resolution for s ≥ 2).

In the following proposition we show that SRES can simulate add and some other rules
of inference.

Definition 5.24. Let F,G be subsets of Ln, and let ` ∈ Ln.

(a) The rule uc defined by
H ∪ {1}

H
(uc)

is called unit cancellation.

(b) The rule mp defined by
{`} H ∪ {`+ 1}

H
(mp)

is called modus ponens.
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The next proposition justificates the fact that SRES incoroporates Gaußian elimina-
tion.

Proposition 5.25. (a) The rules uc, mp and add are sound.

(b) Furthermore, any proof derived using uc, mp, and add can be rewritten into an
SRES-proof.

(c) Let H =
{
{`1}, . . . , {`m}

}
with `i ∈ Ln such that Z(`1, . . . , `m) = ∅. Then we have

H `SRES {1}.

Proof. The correctness of uc follows from the observation that multiplying a Boolean
polynomial by 1 does not change its zeros. Using Remark 5.22 we apply 1-resolution
to H ∪ {1} and {0}, and we get H. To prove modus ponens it suffices to use sres with
s = 1 and G = ∅. Finally, we show the soundness of add. Using the weakening rule, we
infer F ∪ {`1, `2 + 1} from F ∪ {`1} and H ∪ {`2, `1 + 1} from H ∪ {`2}. Then, using
2-resolution, we get F ∪H ∪ {`1 + `2}. This proves (a) and (b). Claim (c) follows from
Claim (b) because it is possible to simulate Gaußian elimination on the linear system
`1 = · · · = `m = 0 over F2 using add.

The SRES proof system is in fact a combined proof system in the sense of [71, Sect.
7.1]. For instance, RLIN is another example of a combined proof system which combines
resolution with polynomial calculus. By Proposition 5.25, we immediately get that SRES
efficiently simulates the system RLIN. This means that there exists a polynomial-time
algorithm which translates any RLIN-proof of H from F1, . . . , Fm to an SRES-proof of
H from F1, . . . , Fm.

Notice that SRES cannot directly simulate the rule pca of the system PC because
addition of two products of linear polynomials does not have to be a product of linear
polynomials in Bn, e.g., h = x1x2+1 cannot be written as a product of linear polynomials
in B3. However, the polynomial h can be encoded in CNF and thus using linearly split
polynomials.

5.3 Completeness of SRES

In this section we prove that SRES is refutationally and implicationally complete.
We start with the following remark and the subsequent proposition which will become
important later in the proof of Proposition 5.30.

Remark 5.26. Let π = (H1, . . . ,Hk) be an SRES-proof of Hk from F1, . . . , Fm that
uses only the rule sres. Let ` be an element of one of the sets Hi. Then ` lies in the
F2-vector space generated by the linear polynomials contained in the union

⋃m
i=1 Fi.

The notation introduced in the following definition will be very useful.

Definition 5.27. Let F ⊆ Ln, and let i ∈ {1, . . . , n}. Let σ be a term ordering.

(a) For a ∈ {0, 1}, let F |xi 7→a denote the set which is obtained by substituting xi 7→ a
into the linear polynomials contained in F .
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(b) For ` ∈ Ln and a term ordering σ, let F |` denote the set which is obtained by
substituting LTσ(`) 7→ `− LTσ(`) into the linear polynomials contained in F .

The exact term ordering used in F |` is not important, and hence we assume σ to be
some fixed term ordering from now on.

Proposition 5.28. Let F ⊆ Ln and let ` ∈ Ln. The following claims hold true for
i ∈ {1, . . . , n}.

(a) F, {xi} `SRES F |xi 7→0

(b) F |xi 7→0, {xi} `SRES F

(c) F, {xi + 1} `SRES F |xi 7→1

(d) F |xi 7→1, {xi + 1} `SRES F

(e) F, {`} `SRES F |`

(f) F |`, {`} `SRES F

Proof. First we prove (a). Let ` ∈ F be such that xi occurs in `. The polynomial xi + `
corresponds to substituting xi = 0 into `. This addition can be derived in SRES using
Proposition 5.25. The claims (b)–(f) follow analogously from Proposition 5.25.

The next example illustrates this proposition.

Example 5.29. Let F1 = {x1 + x2, x1} and F2 = {x1 + 1}. By Proposition 5.25,
there exists an SRES-proof of the set {x2 + 1, 1} from F1, F2 which corresponds to the
substitution of x1 = 1 into F1. Conversely, we can “backtrack” the substitution, i.e. we
have F2, {x2 + 1, 1} `SRES F1. 4

The proof of the following proposition is inspired by the corresponding proof for the
classical resolution calculus (see for instance [27, Thm. 4.1.5]) and by the proof given
in [96, Thm. 5.1].

Proposition 5.30. The proof system SRES is implicationally and refutationally com-
plete.

Proof. First we show that SRES is implicationally complete. Let F1, . . . , Fm, H ⊆ Ln
be sets of linear polynomials such that F1, . . . , Fm |= H. We want to prove that
F1, . . . , Fm `SRES H. We proceed by induction on the number k = size(F1) + · · · +
size(Fm) + size(H).

Let us consider the case k = 0, i.e. the case when all linear polynomials in Fi and H
are constants 0 or 1. If all sets F1, . . . , Fm are equal to {0}, there is trivially an SRES-
proof of {0}. All the semantic implicants of {0} of size 0 can be derived from {0} by the
weakening rule. If there exists a set Fi = {1}, then there is trivially an SRES-proof that
refutes F1, . . . , Fm, and hence we can derive any linear clause by the weakening rule and
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the unit cancellation rule. Finally, if Fi = {0, 1}, then Fi is simplified to {0} by unit
cancellation, and thus we can use the previous argument.

Now assume that the claim holds for some k ≥ 0 and consider a semantic implication

F1, . . . , Fm |= H

in which the sum of sizes of F1, . . . , Fm, H is at most k + 1. Choose i ∈ {1, . . . , n} such
that xi occurs in F1 ∪ · · · ∪ Fm ∪H. Given a ∈ {0, 1}, let F |xi 7→a denote the set which
is obtained by substituting xi 7→ a into the linear polynomials contained in F .

By Proposition 5.28, we have Fj , {xi} `SRES Fj |xi 7→0 for j = 1, . . . ,m. Moreover, we
clearly have F1|xi 7→0, . . . , Fm|xi 7→0 |= H|xi 7→0. By the induction hypothesis, there is an
SRES-proof of H|xi 7→0 from F1|xi 7→0, . . . , Fm|xi 7→0. Altogether, we get

{xi}, F1, . . . , Fm `SRES H|xi 7→0.

Furthermore, by Proposition 5.28, we have H|xi 7→0, {xi} `SRES H. All in all, there is
an SRES-proof π1 of H from {xi}, F1, . . . , Fm. Analogously, we get an SRES-proof π2
of H from {xi + 1}, F1, . . . , Fm.

Next we modify the derivations of π1 (resp. π2) such that they start from {xi, xi +
1}, F1, . . . , Fm instead of {xi}, F1, . . . , Fm (resp. {xi + 1}, F1, . . . , Fm). Note that the
same rules of inference can be applied, and thus one can rewrite the proof π1 into an
SRES-proof α1 from {xi, xi+1}, F1, . . . , Fm of either H or H∪{xi}. Similarly, we rewrite
π2 into an SRES-proof α2 from {xi, xi+1}, F1, . . . , Fm of H or H ∪{xi+1}. If the proof
α1 or α2 ends with H, we are done. Otherwise, we have H ∪{xi}, H ∪{xi + 1} `SRES H
by a single step of the 1-resolution rule, which concludes the proof.

5.4 Some Example Proofs Using SRES

In this section we look at what kind of benefits can we get from using SRES. We shall
see that some formulae are hard for a particular proof system such as RES, but have
short refutations in other axiomatic systems of propositional calculus (e.g. see [113]).
The following example shows an important advantage of the SRES proof system over
PC. More precisely, it shows that linearly split polynomials efficiently store some dense
Boolean polynomials.

Example 5.31. Consider the following subsets of Ln+1

F1 = {x1 + x2, . . . , xn + xn+1}
F2 = {x1 + x2 + 1}
F3 = {x2 + x3 + 1}
... =

...

Fn+1 = {xn + xn+1 + 1}

On one hand, it is easy to see that the system is inconsistent because substituting
F2, . . . , Fn+1 into F1 gives us 1. On the other hand, the input for the Gröbner basis algo-
rithm is assumed to be expanded (i.e., not in the form of products of linear polynomials).
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We can always find n ∈ N such that expanding F1 to the polynom f1 =
∏n
i=1(xi+xi+1),

which has 2n terms, exceeds the available memory, and hence any Gröbner basis algo-
rithm can not be applied. Notice that we have size(F1) = 2n.

One workaround would be to introduce new indeterminates to break the long product,
but it does not help too much because the Gröbner basis algorithm substitutes the new
indeterminates back, and thus recovers the expanded polynomial F1 again.

However, by Proposition 5.28, there exists a short SRES refutation that corresponds
to the substitution of F2, . . . , Fn+1 into F1. 4

In the following example, taken from [32], we compare SRES to algebraic systems such
as PC and the Nullstellensatz proofs.

Example 5.32. Consider the polynomials f1 = x1 + x1x2 and f2 = x2 + x2x3 in
F2[x1, x2, x3]. They encode the two implications x1 → x2 and x2 → x3. (E.g., if x1 = 1,
then x2 is constrained to be 1.) Let us write a proof of h = x1+x1x3, i.e., the implication
x1 → x3, in the Gröbner proof system.

Firstly, we multiply f2 by x1, and we get g1 = x1x2 + x1x2x3. The addition f1 + g1
gives us x1 + x1x2x3. Then we compute g2 = x3 · f1 = x1x3 + x1x2x3. Finally, we get
g1 + g2 = x1 + x1x3.

Note that the maximal degree appearing in the proof is 3. However, there exists a Null-
stellensatz proof of the maximal degree O(log(n)) of x1 → xn from x1 → x2, . . . , xn−1 →
xn (see [32]). In our case, the Nullstellensatz proof is the tuple (1+x3, x1, 0, 0, 0) because
of the equality

(1 + x3)(x1 + x1x2) + x1(x2 + x2x3) = x1 + x1x3.

Now we write the polynomials f1, f2 as F1 = {x1, 1 + x2} and F2 = {x2, 1 + x3}.
Resolving on x2 yields H = {x1, 1 + x3} which corresponds to the polynomial h. Note
that the maximal degree in the proof is now 2, and the SRES proof is simpler than the
Gröbner proof. 4

Further typical examples that are easy for SRES and difficult for RES are inconsistent
systems of linear equations (see [113]). By Proposition 5.25, SRES simulates the addition
rule, and thus one can use Gaußian elimination to produce SRES-refutations for such
systems.

Example 5.33. Consider the linear system

f1 = x1 + · · ·+ xn, f2 = x1 + · · ·+ xn + 1

over F2 where n � 0. On one hand, encoding f1 and f2 in CNF suffers from introduc-
ing either many auxiliary variables or many new clauses. On the other hand, by the
weakening rule and 2-resolution we get f1(f2+1)+(f1+1)f2 = 1 in Bn immediately. 4

Many CNF instances which are difficult for the resolution calculus can be naturally
encoded in linearly split polynomials. One class of such examples comes from substi-
tuting linear XORs into literals as described in [76, Sect. 3]. Thus, in fact, linearly split
polynomials naturally encode certain formulas which are very hard for the resolution
calculus.
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Example 5.34. Let C =
{
{X1}, {X̄1, X2}, {X̄1, X̄2}

}
be a set of clauses in 2 logical

variables. It is easy to see (e.g. by resolution) that S(C) = ∅. The substitution X1 7→ `1
and X2 7→ `2 using two (homogeneous) polynomials `1, `2 ∈ Ln yields the unsatisfiable
set of linearly split polynomials {`1}, {`1 + 1, `2}, {`1 + 1, `2 + 1}. 4

Since s-resolution is more powerful than 1-resolution, we expect that it discovers more
linear polynomials when constructing SRES-proofs. Since Gaußian elimination can be
simulated in SRES (see Proposition 5.25), we expect to find the element 1 in the ideal
earlier. This intuition seems to work for some examples which are traditionally hard for
1-resolution refutation. Let us see some examples for this phenomenon.

Example 5.35. The linearly split polynomials h1 = x1x2, h2 = x1(x3 + 1), h3 =
(x2 + 1)x3, h4 = (x1 + 1)x3, h5 = x2(x3 + 1), and h6 = (x1 + 1)(x2 + 1) in S3 correspond
to an example of a Tseitin formula derived from a graph (see for instance [76, Sect. 2]).
Using 2-resolution, we get

h1, h6 `sres x1 + x2 + 1

h2, h4 `sres x1 + x3

h3, h5 `sres x2 + x3

Gaußian elimination then yields 1. The maximal degree (or the maximal size) reached
in the proof is 2 (or 2). These values do not exceed the degree and the size of the
input. 4

Example 5.36. The linearly split polynomials h1 = x11x12, h2 = x11x13, h3 = x12x13,
h4 = x21x22, h5 = x21x23, h6 = x22x23, h7 = (x11 + 1)(x21 + 1), h8 = (x12 + 1)(x22 + 1),
and h9 = (x13 + 1)(x23 + 1) correspond to the pigeonhole hole principle in the case of 3
pigeons and 2 holes (cf. [76, Sect. 2]). Using 1-resolution, we get:

h1, h7 `sres x12(x21 + 1) = r1

h2, h7 `sres x13(x21 + 1) = r2

h3, h9 `sres x12(x23 + 1) = r3

h4, h8 `sres x21(x12 + 1) = r4

h6, h8 `sres x23(x12 + 1) = r5

r2, h9 `sres (x21 + 1)(x23 + 1) = r6

Then, using 2-resolution, we get:

r1, r4 `sres x12 + x21 = `1

r3, r5 `sres x12 + x23 = `2

r6, h5 `sres x21 + x23 + 1 = `3

Finally, Gaußian elimination discovers `1 + `2 + `3 = 1. The maximal degree (or the
maximal size) reached in the proof is 2 (resp. 2). These values do not exceed the degree
and the size of the input. 4
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A way how to generate a benchmark of linearly split polynomials whose instances are
unsatisfiable is described in Algorithm 5.1. It generates a set of linearly split polynomi-
als A such that Z(A) = ∅, and such that there exists a short proof of inconsistency of A
using s-resolution. In other words, by applying the s-resolution rule in a specific order
on the input and on intermediate results, we obtain 1 after relatively few iterations.
Note that s-resolution operates on general linearly split polynomials in this case, and
not only on outputs of the standard CNF to ANF conversion.

Algorithm 5.1 Gen-sres (Random Decision Trees using sres)

Input: k, n ∈ N+.
Output: A set A with #A = k + 1 whose elements are in Ln and Z(A) = ∅.

1: A =
{
{1}
}

2: for i = 1, . . . , k do
3: Select randomly an element R in A and remove R from A.
4: Construct two sets B1, B1 ⊂ Ln such that B1, B2 `sres R.
5: A := A ∪ {B1} ∪ {B2}
6: end for
7: return A

Proposition 5.37. Algorithm 5.1 is correct, i.e. it holds Z(A) = ∅ for the returned set
A for any k, n ∈ N+.

Proof. Let us prove that A is unsatisfiable after each iteration of the for loop. Clearly,
we have A |= {1} in Step 1. In Step 4, we have A ∪ {B1} ∪ {B2} |= A ∪ {R} by the
correctness of sres, i.e. the state of A before executing Step 3 is obtained. By iterating
the above argument, we get A |= {1}.

Note that A `sres {1} by the construction of Algorithm 5.1. Let us illustrate Algo-
rithm 5.1 in some examples and explain how to deal with Steps 3 and 4.

Example 5.38. Let n = 3. We start with A =
{
{1}
}

. We remove {1} from A and
append B1 = {x1 + x2} and B2 = {x1 + x2 + 1}. Note that we have B1, B2 `sres {1}
by 1-resolution. After that, we obtain A =

{
B1, B2

}
. We remove B2 and append

B3 = {x1 + x2 + x3 + 1, x3 + 1} and B4 = {x1 + x2 + x3, x3}. Note that we have
B3, B4 `sres B2 by 2-resolution. The resulting set A =

{
B1, B3, B4

}
is unsatisfiable by

the construction. 4

The next example shows, among other things, how to convert arbitrary linear clauses
to CNF.

Example 5.39. Consider the linearly split polynomials f1 = (x1 + x2)(x2 + x3), f2 =
(x1 +x2 + 1)(x2 +x3 + 1), and f3 = x1 +x3 in S3. Using the following s-resolution tree,
we obtain 1, i.e., Z(A) = ∅ for A = {f1, f2, f3}.
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1

x1 + x3

x1 + x3 + 1

(x1 + x2 + 1)(x2 + x3 + 1)(x1 + x2)(x2 + x3)

As in Example 4.5, let the sets of clauses C1, C2, C3 encode linear equations y1 =
x1 + x2, y2 = x2 + x3 and y3 = x1 + x3 over F2. The final encoding of A in CNF is then
equal to

C1 ∪ C2 ∪ C3 ∪
{
{Y1, Y2}, {Ȳ1, Ȳ2}, {Y3}

}
.

4

Let us recall that linear clauses generalize clauses, i.e. solvers for sets of linear clauses
can admit sets of clauses, too. However, by doing that, we loose the strength of richer
representations. E.g., note that almost all transformations (except for S-boxes) used in
block ciphers based on substitution-permutation networks are affine (cf. Example 2.36).
This means that if we find a representation of the non-linear part of the cipher as a set
of linear clauses, we are able to represent the whole the cipher as a set of linear clauses.

Before going to the next example which contains a representation of the S-box of LED
using linearly split polynomials, we introduce a DIMACS-like format for sets of linearly
split polynomials which allows us to comfortably write down the linear clauses. The
first line starts with a header of the form

p lcnf n m,

where n denotes the number of variables, and m denotes the number linearly split
polynomials. The next lines contain linearly split polynomials (one per line). Linear
polynomials are divided by “|”, and zeros in the sequences are read as “+1”. Each line
ends with “||”. For instance, the line

0 1 | 0 2 | 3 4 5 ||

corresponds to the equation

(x1 + 1)(x2 + 1)(x3 + x4 + x5) = 0.

Example 5.40. The S-Box of LED can be represented in the above format as follows.

p lcnf 8 29

0 1 | 0 2 | 0 3 4 5 ||

1 | 0 2 | 3 4 6 ||

1 2 | 3 | 0 4 7 ||

1 | 0 2 3 | 0 4 8 ||

0 1 | 2 | 0 3 4 8 ||

0 1 2 | 0 3 | 4 8 ||

0 1 | 2 | 0 3 4 | 0 5 ||

1 2 | 3 | 0 4 | 0 5 ||

1 | 0 2 | 0 3 | 4 5 ||
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0 1 2 | 0 3 | 0 4 | 0 6 ||

0 1 | 0 2 | 3 4 | 0 6 ||

0 1 | 2 | 3 | 4 6 ||

0 1 | 2 3 | 4 | 6 ||

0 1 2 | 0 3 | 0 4 | 7 ||

1 | 0 2 3 | 4 | 0 7 ||

1 | 0 2 | 3 | 0 4 8 ||

0 1 | 0 2 | 3 | 4 8 ||

1 | 0 2 | 3 | 4 | 0 5 ||

0 1 | 2 | 0 3 | 4 | 5 ||

0 1 | 2 | 0 3 | 0 4 | 6 ||

1 | 2 | 0 3 | 4 | 0 6 ||

1 | 0 2 | 0 3 | 0 4 | 0 7 ||

0 1 | 2 | 0 3 | 0 4 | 7 ||

1 | 2 | 0 3 | 4 | 0 7 ||

1 | 2 | 3 | 0 4 | 7 ||

1 | 2 | 5 ||

1 | 2 | 3 | 6 ||

0 1 | 0 2 | 3 | 0 7 ||

0 1 | 0 3 | 4 | 7 ||

4

In the above example, we took a CNF containing 64 clauses representing the S-box
of LED and searched for patterns which correspond to linearly split polynomials. If a
subset of clauses corresponds to a linearly split polynom, it is removed. This process
goes on until no suitable subset of clauses is found.

5.5 SRES Closure Algorithms

Now we turn our attention to the fundamental question how to produce SRES-proofs
in an algorithmic way. As before, we assume that all sets occurring in the algorithm
do not contain duplicates, i.e., that removal of duplicates is applied whenever possible.
This is the classical assumption on sets in programming languages such as python. We
focus on refutations, since many search problems can be reformulated using refutation
as in the next example.

Example 5.41. Let S be a set of linearly split polynomials which has a unique solution.
Exactly one of the two systems S∪{xi} and S∪{xi+1} will be unsolvable, i.e. there exists
an SRES-refutation for it. Iterating this procedure for all indeterminates x1, . . . , xn in
the system we get the complete solution for S. Note that the total number of refutations
is 2n. 4

When computing s-resolvents, it is necessary to use the maximal possible s, since
otherwise `i(`i + 1) = 0 forces the resolvent to be zero (see Example 5.20). In order to
make everything precise, we spell out an explicit algorithm for computing s-resolvents,
namely Algorithm 5.3 and its subroutine Algorithm 5.2.
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Algorithm 5.2 AnalyzePair (Analysis of a Pair)

Input: Sets F,G ⊆ Ln.
Output: Sets AF , B, F

′, G′ ⊆ Ln.

1: AF := {` ∈ F | `+ 1 ∈ G}
2: AG := {` ∈ G | `+ 1 ∈ F}
3: B := {` ∈ F | ` ∈ G}
4: F ′ := F \ (AF ∪B)
5: G′ := G \ (AG ∪B)
6: return (AF , B, F

′, G′)

Algorithm 5.2 decompose sets F,G into the set AF of the “complementary” linear
polynomials, into the set B of the “shared” linear polynomials, and the “remainders”
F ′, G′.

Example 5.42. Let F = {x1, x2, x3, x4} and G = {x1 + 1, x2 + 1, x3, x5 + 1}. Al-
gorithm 5.2 decomposes F and G into AF = {x1, x2}, B = {x3}, F ′ = {x4} and
G′ = {x5 + 1}. 4

The rule sres is implemented in Algorithm 5.3. This algorithm is clearly finite, and
the proof of correctness follows directly from Definition 5.16.

Given three or more linearly split polynomials, the order of performing s-resolution
steps does matter, as the following example shows.

Example 5.43. Let f1 = x1x2x3, f2 = x1x2(x3 + 1), and f3 = x1 + 1. Then we may
draw the following 1-resolution trees.

x2

f3

x1x2

f2f1

x1x2

f1

x2(x3 + 1)

f3f2

Clearly, the polynomial x2 is more useful than x1x2. Thus the order of the s-resolution
steps may influence the quality of the output. 4

Any set of clauses corresponds to a set of linearly split polynomials via Algorithm 4.2
where the linear polynomials are of the form xi and xi + 1. That is why we can look
into refuting a set of clauses using SRES as a separate case. The idea of the algorithms
in this section is to compute a closure using sres. The definition of the sres-closure is
given below (see Definition 2.24).

Definition 5.44. Let C ⊂ Ln. The sres-closure of C is defined recursively as follows.

(a) SRes0(C) = C
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Algorithm 5.3 Sres (s-Resolution of Two Polynomials)

Input: Sets F,G ⊆ Ln.
Output: A number s = #{` ∈ F | ` + 1 ∈ G} ≥ 1 and R ⊆ Ln such that R is the

s-resolvent of F and G. If an s-resolvent of F and G cannot be constructed for
any s, the algorithm outputs s = 0 and R = ∅.

Require: Algorithm 5.2.

1: (AF , B, F
′, G′) := Analyze(F,G)

2: if AF = ∅ then
3: return (0, ∅)
4: else
5: Write AF as {`1, . . . , `s}.
6: R := B ∪ F ′ ∪G′
7: if s = 1 and R = ∅ then
8: return (1, {1})
9: else

10: for i = 1, . . . , s− 1 do
11: if `i + `i+1 /∈ R then
12: R := R ∪ {`i + `i+1 + 1}
13: else
14: return (s, {0})
15: end if
16: end for
17: end if
18: return (s,R)
19: end if

(b) SRes1(C) = C ∪ {r | r is an s-resolvent of two clauses in C for some s ≥ 1}

(c) SResi+1(C) = SRes(SResi(C)) for i > 1

(d) The set SRes∞(C) =
⋃∞
i=0 SRes(C) is called the sres-closure of C.

In the next proposition, StdANF denotes Algorithm 4.1 which converts a set of clauses
to linearly split polynomials. Proposition 5.45 is the key for proving completeness of
Algorithm 5.4.

Proposition 5.45. Let C be a set of clauses.

(a) We have SRes∞(StdANF(C)) ⊇ StdANF(Res∞(C)).

(b) Let S = {F1, . . . , Fm} such that Fi ⊂ Ln and every linear polynomial ` ∈ Fi satisfies
# Var(`) = 1 for i = {1, . . . ,m}. Then we have S |= {1} if only if {1} ∈ SRes∞(S).

Proof. Claim (a) follows from Propositions 4.6 and 5.19. Claim (b) follows from Propo-
sition 2.25 and Claim (a).
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Algorithm 5.4 is inspired by the design of Algorithm 2.1. The pairs (F,G) in Algo-
rithm 5.4 are processed in the increasing order with respect to the following ordering
relation.

Definition 5.46. Let F,G, F1, F2, G1, G2 ⊆ Ln.

(a) We write F � G if we have deg(F ) < deg(G), or if we have deg(F ) = deg(G) and
size(F ) < size(G).

(b) Let s1 = #{` ∈ F1 | ` + 1 ∈ G1} ≥ 1 and s2 = #{` ∈ F2 | ` + 1 ∈ G2} ≥ 1. We
write (F1, G1)E (F2, G2) if R1 � R2 where R1 is the s1-resolvent of F1 and G1, and
R2 is the s2-resolvent of F2 and G2.

Note that the s-resolvents in (b) exist because of the inequalities s1 ≥ 1 and s2 ≥ 1.
The SRES closure algorithm for a set of clauses is given in Algorithm 5.4.

Algorithm 5.4 SRES-Refute-CNF (The SRES Refutation Algorithm for CNF)

Input: Subsets F1, . . . , Fm ⊆ Ln such that any linear polynomial ` in Fi satisfies
# Var(`) = 1 for i ∈ {1, . . . ,m}. Furthermore, the set Fi is the set of linear
factors of a linearly split polynomial for i ∈ {1, . . . ,m}.

Output: False if F1, . . . , Fm |= {1}, True otherwise.
Require: Algorithm 5.3.

1: S := {F1, . . . , Fm}
2: if {1} ∈ S then
3: return False

4: end if
5: Let P be the list of all (Fi, Fj) such that 1 ≤ i < j ≤ m.
6: while P 6= ∅ do
7: Let (F,G) be a minimum of P w.r.t. E, and remove (F,G) from P .
8: (s,R) :=Sres(F,G)
9: if s 6= 0 then

10: if R = {1} then
11: return False

12: else if R is not a subset of any Q ∈ S then
13: Append all (R,G) such that G ∈ S,R 6= G at the end of the list P .
14: S := S ∪ {R}
15: end if
16: end if
17: end while
18: return True

Proposition 5.47. Algorithm 5.4 is finite and correct.

Proof. Let us prove finiteness first. Note that the set R produced in Step 8 is the set of
linear factors of a linearly split polynomial. Since there exist only finitely many linearly
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split polynomials of degree ≤ n, the set S can be enlarged only finitely many times.
The number of all pairs formed from sets in S is finite as well. The while-loop is finite,
because there are only finitely many pairs in P . Note that P does not contain duplicities
because of Step 12. Thus is follows that the entire algorithm is finite.

Correctness follows from Proposition 5.45 and from the fact that all possible s-
resolvents are created in Step 8, and hence all elements in SRes∞({F1, . . . , Fm}) are
successively derived.

It is clear that s-resolution is more powerful for sets of clauses which share a lot of
variables. Therefore Algorithm 4.3 can be used profitably as a preprocessing step for
Algorithm 5.4. This combination can be seen as a lightweight version of Algorithm 4.4
because s-resolvents are build instead of S-polynomials. Let us see a case in point.

Example 5.48. Consider the linearly split polynomials h1 = x1x2x3, h2 = (x1 + 1)
(x2 + 1)x3, and h3 = x3 + 1. Then the set {h1, h2, h3} corresponds to a 1-block (see
Sect. 4.4), and s-resolution discovers the linear polynomial ` = x1 + x2 + 1. Note that
the degree (or the size) of ` is 1 (or 2). 4

In the next example we compare Algorithm 5.4 to proofs obtained by the proof system
ERES in Definition 5.7.

Example 5.49. Let C = {c1, c2} where c1 = {L1, L2} and c2 = {L̄1, L̄2} are clauses
with literals L1 = X1 and L2 = X2. Applying 2-resolution, we get the clause c3 = {L3}
with a new variable L3 with the meaning L3 ⇔ X1⊕X2. Note that, unlike in ERES, we
do not explicitely encode the definition L3 := X1 ⊕X2 in CNF. 4

Let us focus our attention to general linearly split polynomials, and not only a set of
clauses. First of all, we point out that the rule weak in Definition 5.21 is very important
in the general case. For Algorithm 5.4 to be correct, it is essential that every input
polynomial of Algorithm 5.4 is the standard algebraic representation of a clause. The
following example shows that sres (only by itself) cannot detect unsatisfiability of general
sets of linearly split polynomials.

Example 5.50. Let us apply Algorithm 5.4 to the linearly split polynomials h1 =
(x1 +x2)(x3 +x4 +1), h2 = x1, h3 = x2 +1, h4 = x3 and h5 = x4 in S4. Since we cannot
form any s-resolvents, the algorithm returns True. However, the equality

1 = h1 + h2 + h3 + (x1 + x2)h4 + (x1 + x2)h5

shows that the system is inconsistent, i.e., that Z(〈h1, . . . , h5〉) = ∅. 4

The previous example illustrates that the weakening rule cannot be omitted. Algo-
rithm 5.5 extends two polynomials by weak in all possible ways such that s-resolution
can be applied. More precisely, this set of extensions is defined as follows.

Definition 5.51. Let F,G ⊆ Ln. The set of all pairs K ⊆ Ln × Ln such that the
following two conditions hold for all (F ′, G′) ∈ K.

112



5.5 SRES Closure Algorithms

(a) #{` ∈ F ′ | `+ 1 ∈ G′} ≥ 1

(b) F ′ ∪G′ ⊆ F ∪G ∪ {`+ 1 | ` ∈ F ∪G}

is called the set of expansions for F,G.

Condition (a) encodes the fact that there exists at least one ` ∈ Ln in F ′ and G′ on
which we can s-resolve. Condition (b) restrains F ′, G′ to contain linear polynomials `
or `+ 1 such that ` ∈ F ∪G. Note that the set of expansions for F,G is unique.

Algorithm 5.5 produces the set of expansions in a direct way, i.e., Condition (a) is
implemented in Step 10, and Condition (b) is fulfilled because of the two foreach loops
in Steps 3, 4.

Algorithm 5.5 AllExpansions (All Possible Expansions to s-Resolvents)

Input: Sets F,G ⊆ Ln.
Output: The set of expansions for F,G.

1: {`1, . . . , `k} := {` ∈ F | ` /∈ G, `+ 1 /∈ G}
2: {`′1, . . . , `′k′} := {` ∈ G | ` /∈ F, `+ 1 /∈ F}
3: foreach A ∈ {`1, `1 + 1, 1} × · · · × {`k, `k + 1, 1} do
4: foreach B ∈ {`′1, `′1 + 1, 1} × · · · × {`′k′ , `′k′ + 1, 1} do
5: Write A = (a1, . . . , ak).
6: Write B = (b1, . . . , bk′).
7: F ′ := F ∪

⋃k
i=1{bi}

8: G′ := G ∪
⋃k′

i=1{ai}
9: Minimize the representation of F ′ and G′ by applying unit cancellation, i.e.,

remove the element 1 from F ′, G′.
10: if #{` ∈ F ′ | `+ 1 ∈ G′} ≥ 1 then
11: K := K ∪ {(F ′, G′)}
12: end if
13: end foreach
14: end foreach
15: return K

The next example shows the generation of the pairs in Algorithm 5.5.

Example 5.52. Let F = {x1, x2, x3 + 1} and G = {x1 + 1, x2, x4}. Then we may
extend F to F itself, to F1 = {x1, x2, x3 + 1, x4}, or to F2 = {x1, x2, x3 + 1, x4 + 1}.
Similarly, we may extend G to G, to G1 = {x1 + 1, x2, x4, x3 + 1}, or to G2 = {x1 + 1
, x2, x4, x3}. Altogether, nine pairs (F,G), (F,G1), (F,G2), (F1, G), (F1, G1), (F1, G2),
(F2, G), (F2, G1), (F2, G2) are constructed. 4

Now we are ready to present Algorithm 5.4 for constructing SRES-refutations.

Proposition 5.53. Algorithm 5.6 is correct, refutationally complete, and finite. In
particular, the algorithm returns False if and only if F1, . . . , Fm |= {1}.
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Algorithm 5.6 SRES-Refute (The SRES Refutation Algorithm)

Input: Subsets F1, . . . , Fm ⊆ Ln such that Fi is the set of linear factors of a linearly
split polynomial.

Output: False if F1, . . . , Fm |= {1}, True otherwise.
Require: Algorithms 5.3, 5.5.

1: S := {F1, . . . , Fm}
2: if {1} ∈ S then
3: return False

4: end if
5: Apply unit cancellation to S.
6: {Q1, . . . , Qk} := S ∪

⋃n
i=1{xi, xi + 1}

7: Let P be the list containing all pairs computed by AllExpansions(Qi, Qj) for 1 ≤
i < j ≤ k.

8: while P 6= ∅ do
9: Let (F,G) be a minimum of P w.r.t. E, and remove (F,G) from P .

10: R :=Sres(F,G)
11: if R = {1} then
12: return False

13: else if R is not a subset of any Q ∈ S then
14: Remove all Q from S with R ( Q and all pairs (Q1, Q2) from P such that

R ( Q1 or R ( Q2.
15: Append all pairs in AllExpansions(R,G) for G ∈ S,R 6= G to the list P .
16: S := S ∪ {R}
17: end if
18: end while
19: return True

Proof. Finiteness follows from the fact that there are only finitely many linear polyno-
mials in Ln. Hence the sets in S are finite, and so is the set P ⊆ Ln × Ln.

The algorithm is correct because the SRES inference rules are sound by Corollary 5.19.

It remains to show that the algorithm is refutationally complete. Assume that the
ideal generated by the polynomials corresponding to the input sets has no common zero.
By Proposition 5.30, we know that there exists an SRES-refutation of F1, . . . , Fm. We
show that this SRES-refutation can be found by the algorithm. We prove it by a more
general claim, namely, that Algorithm 5.6 constructs all possible proofs starting from
the initial premises.

The Boolean axiom is incorporated in Step 6, and consequences of the weakening
rule are constructed in the function AllExpansions such that all possible choices to
form an s-resolvent are created for all possible s ∈ N+. The s-resolution rule is then
applied by calling Sres. All possible SRES-derivations are produced by the mechanism
of appending the new pairs in Step 15.

Note that any set Q that is a proper superset of some set already occurring in S can
be skipped because all possible s-resolvents that would be created using Q are at that
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time already in P . Thus the algorithm sequentially creates all SRES-derivations from
F1, . . . , Fm.

Algorithm 5.6 arranges the computation such that “smaller” sets in terms of size are
preferred. The list P in Algorithm 5.6 can be implemented as a min-heap such that
the minimal pair is always easily found and extracted. The number of pairs in P may
be huge. Thus it is convenient to compute the s-resolvents only in Step 10. The next
example indicates how the pairs can be stored. The s-resolvent is created only if its size
is minimal.

Example 5.54. Let F1 = {x1 + 1} and F2 = {x1, x2}. Algorithm AllExpansions

outputs (F1, F2), (F1 ∪ {x2 + 1}, F2), (F1 ∪ {x2}, F2). The pair (F1 ∪ {x2}, F2) can be
stored as a tuple (1, {x2}, 2, ∅, 1) with the meaning “the s-resolvent of F1 ∪ {x2} and
F2 ∪ ∅ has size 1”. 4

Clearly, we need to know the sizes of all s-resultants in P in order to select the
minimum. Thus the chosen format is very convenient because the size of the s-resolvent
can be predicted as in [54, Alg. 8] without computing the actual s-resolvents.

Furthermore, one can form only 2-resolvents in Algorithm 5.6 since 2-resolution is
enough to simulate RLIN which is implicationally and refutationally complete. However,
“extra” linear clauses coming from s-resolution steps with s ≥ 3 may come in handy,
and the refutation can be found faster in Algorithm 5.6.

5.6 SRES Refutation Using DPLL Techniques

It took several decades to develop efficient SAT solvers based on classical resolu-
tion. Algorithm 5.6 uses more advanced reasoning than classical resolution. However,
it is guided by a very simple strategy, namely “derive narrow polynomials first”. Algo-
rithm 5.6 is not very practical because a huge number of pairs is created in AllExpan-

sions. One way how of supplanting weakening, which is very important for computing
the sres-closure, is to turn the algorithm into a DPLL-based version.

Boolean constraint propagation (see Algorithm 2.4) is the key ingredient of modern
SAT solvers. Thus we define a new propagation mechanism, called Gaußian constraint
propagation (GCP), which is geared towards our setting. GCP is described in Algo-
rithm 5.7. The set D contains assignments of indeterminates and linear polynomials,
i.e. it can be represented by a decision stack (see Definition 2.27 and Example 2.28). In
this setting, a decision stack is a two-dimensional tuple of linear polynomials, e.g. the
linear polynomial x1 + 1 denotes the decision x1 7→ 1, and the linear polynomial x1 +x2
denotes the equation x1 + x2 = 0. New linear polynomials which are returned by Al-
gorithm 5.7 are referred to as implied linear polynomials. Notice that in Algorithm 5.7
the linear polynomial ` rewrites all indeterminates in `′ and not only LT(`′).

Proposition 5.55. Algorithm 5.7 is correct, i.e. if the algorithm returns a = False

then we have Z(S|D) = ∅. Furthermore, for its output D′ we have S `SRES {H} for all
H ∈ D′.
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Algorithm 5.7 GCP (Gaußian Constraint Propagation)

Input: A set of linearly LTσ-interreduced linear polynomials D, a set S = {F1, . . . , Fm}
with Fi ⊆ Ln, a term ordering σ.

Output: A set of LTσ-interreduced linear polynomials D′ such that S|D |= S|D′ , a
Boolean value a. If a = False, then we have Z(S|D) = ∅.

1: D′ := ∅
2: repeat
3: E := D′

4: for F ∈ S do
5: F ′ := F
6: while ` ∈ D ∪D′ such that LTσ(`) ∈ Supp(`′) for some `′ ∈ F ′ do
7: Rewrite the linear polynomial `′ in F ′ using the rewriting rule LTσ(`) 7→

`− LTσ(`).
8: end while
9: r :=

∏
`∈F ′ `

10: if r ∈ Ln and r 6= 0 then
11: if r = 1 then
12: return (D′, False)
13: else
14: D′ := D′ ∪ {r}
15: end if
16: end if
17: end for
18: until E = D′

19: return (D′, True)

Proof. The claims follows from the fact that the substitution of linear polynomials is
sound and from Proposition 5.28 and 5.25.

Notice that to design a combination of the closure algorithm given in Algorithm 5.6
with Algorithm 5.7 such that the resulting algorithm is refutationally complete is not
an easy task. An instance that demonstrates some issues which have to be taken care
of is given in the next example.

Example 5.56. Consider the set of linearly split polynomials S = {h1, . . . , h5} with
h1 = x1(x1 + x2), h2 = x2(x1 + x2), h3 = x1x2, h4 = (x1 + x2 + x3 + 1)(x3 + 1)
and h5 = (x2 + x3)(x1 + x3). Note that the rule sres cannot be applied, and no linear
polynomial can be substituted using Algorithm 5.7. However, the system {h1, . . . , h5}
is inconsistent. This can be proven as follows. From h1, h2, h3 we get that x1 = x2 = 0.
Then we obtain x3 = 1 by the substitution of x1 = x2 = 0 into h4. However, the partial
assignment is not consistent with h5, i.e. the polynomial 1 cannot be derived by an
application of sres and Algorithm 5.7. 4

However, using Algorithm 5.7 in the DPLL structure given in Algorithm 2.6 gives us
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the refutationally complete Algorithm 5.8. Note that the structure of Algorithm 2.6 is
very similar to Algorithm 5.8.

Algorithm 5.8 SRES-DPLL (The SRES Refutation based on DPLL)

Input: A set S = {F1, . . . , Fm} with Fi ⊆ Ln, a term ordering σ.
Output: A LTσ-interreduced tuple of linear polynomials D ⊆ Ln such that Z(D) ⊆

Z(S) if #Z(S) > 0; False otherwise.
Require: Algorithms 5.7 and 2.5.

1: (D′, a) = GCP(∅, S, σ)
2: if a = False then
3: return False

4: end if
5: D := (D′)
6: A := ∅; b := True

7: while D does not contain n LTσ-interreduced polynomials do
8: if b = True then
9: Choose an indeterminate xi ∈ Var(S) \

{
LTσ(`) | ` ∈

⋃
T∈D T

}
and a Boolean

value v ∈ {0, 1}.
10: Append the tuple (xi + v) to D
11: A := A ∪ {xi + v}
12: end if
13: b := True

14: (a,D′) = GCP(D,S, σ)
15: Append the linear polynomials in D′ to the end of the last tuple in D.
16: if a = False then
17: (D, d) := Chro-Backtrack(A,D).
18: b := False

19: if d = False then
20: return False

21: end if
22: end if
23: end while
24: return D

The correctness of the algorithm follows the same lines as the proof for the classical
DPLL procedure. (For a formal proof of DPLL, see [82, Th. 1].) The only differences
are the different propagation mechanism (GCP instead of BCP) and the different data
structure (linear clauses instead of clauses). The branching step is based on the iterative
decomposition of S into the two sets xi+1, S|xi 7→1 and xi, S|xi 7→0. Every zero a ∈ Z(S)
can be found in the union of the solution sets of the above systems.

Proposition 5.57. Algorithm 5.8 is correct, refutationally complete, and finite. In
particular, the algorithm returns False if and only if F1, . . . , Fm |= {1}.

Proof. Let us prove finiteness. The algorithm chooses at most n indeterminates in
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Step 9. The procedure Chro-Backtrack enumerates all possible assignments for those
indeterminates, i.e. after at most 2n iterations the while-loop terminates.

The list D contains LTσ-interreduced linear polynomials in every iteration of the
algorithm. In particular, n linear polynomials in D defines a zero a ∈ Z(D). By
Proposition 5.55 we have a ∈ Z(S). Conversely, Z(D) = ∅ implies Z(S) = ∅, i.e.
correctness follows from Proposition 5.55.

It remains to show that the algorithm is refutationally complete. Assume that Z(S) =
∅. This means that the set S|x1 7→v1,..., xn 7→vn contains the polynomial 1 for every value
v1, . . . , vn ∈ {0, 1}. The subroutine GCP eliminates the partial assignments of the inte-
derminates x1, . . . , xn which cannot be extended to a common zero. That is why, after
backtracking to decision level 0, the algorithm returns False.

As a next step, the above DPLL-based algorithm could be modified to a CDCL-like
procedure. In the next example, we give some suggestions inspired by 1UIP learning for
our case. Please refer to Example 2.30 for a comparison and the notation.

Example 5.58. Let c1 = {x1+x2+x3+1, x3+x4+x5}, c2 = {x2+x4+x5, x5+x6}, and
c3 = {x5 +x6 +1, x7}. Assume that the decisions are as follows (in order of appearance)
x1 7→ 1, x2 7→ 0, x7 7→ 1, x3 7→ 1. After each decision is made, we run GCP to derive
implied linear polynomials. The corresponding decision stack is given below.

decision level decision implied linear polynomials

0
1 x1 + 1
2 x2
3 x7 + 1 x5 + x6 + 1 (c3), x4 + x6 + 1 (c2)
4 x3 + 1 1 (c1)

Firstly, note that it is not possible to s-resolve c1 and c2. The learned linearly split
polynomial is the 1-resolvent of c2 and c3, i.e. r = {x2 + x4 + x5 @ 2, x7 @ 3}. Note
that we suggest labeling the new linear polynomials in r by the decision levels of the
linear polynomials in the decision stack which has the same leading terms as the linear
polynomials in r. Secondly, r is not a 1UIP in the common sense because there is no
linear polynomial in r which was assigned at level 4. The set r can be appended to
the input linearly split polynomials because we have Z(c1, c2, c3) = Z(c1, c2, c3, r) by
Corollary 5.19. 4

Translation of non-chronological backtracking from sets of clauses to sets of linear
clauses is not straightforward. However, it is possible to combine the learning procedure
described in Example 5.58 with chronological backtracking given by Algorithm 2.5. This
combination is sound and complete due to Proposition 5.57 and Corollary 5.19.

5.7 Experiments

In this section we examine the efficiency of the several s-resolution techniques to
the classical resolution. All tests were executed on a computing server having a 3.00
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GHz Intel(R) Xeon(R) CPU E5-2623 v3 and a total of 48 GB RAM. All algorithms in
this chapter were prototypically implemented in python version 2.7. For testing SAT
solvers, we use CryptoMiniSat [106] version 5.6.6 with enabled Gaußian elimination,
Glucose [6] version 4.1 and MiniSat [41] version 2.2.0. All SAT solvers are run out-of-
the-box without any special parameter tuning. The timeout for all tests was set to 1200
or 1500 seconds. If an execution exceeds the limit, it is marked in the tables by “>1500”
or by “-” if the timeout was set to 1200 seconds.

Refuting CNF Formulas Using s-Resolution

In Table 5.1 we compare Algorithm 5.4 to the resolution closure algorithm. By the
resolution closure algorithm (RCA), we mean Algorithm 5.4 with the following restric-
tion: Algorithm 5.3 returns a value only if s = 1, i.e. s-resolvents with s ≥ 2 are ignored.
Hence both algorithms share the same structural framework. Algorithm 5.4 produces
far more s-resolvents than the RCA, because s is not restricted to 1. As a consequence,
Algorithm 5.4 creates the same intermediate results as RCA together with some new
linearly split polynomials. To derive these extra polynomials first, the choice in which
order the pairs are processed in Step 4 is crucial.

The instances tseitin-i-j correspond to Tseitin formulas derived from a random
grid graph of size i × j such that the resulting formula is unsatisfiable (see [76, Sect.
2]). The instances aim correspond to random 3-SAT formulas in [4] and dubois to
random CNF formulas by Olivier Dubois 1. The instance php-i-j corresponds to a
pigeonhole-principle formula, namely placing i pigeons into j holes (see [76, Sect. 2]).
Table 5.1 contains the timings (in seconds) for RCA and for Algorithm 5.4 on the given
instances, the number of linearly independent linear polynomials discovered before 1 is
found during the run of Algorithm 5.4, as well as the cpu timing of CryptoMiniSat

(abbreviated to CMS), Glucose and MiniSat (abbreviated to MS).

Notice that Algorithm 5.4 uses Gaußian elimination to show that 1 is in the ideal
generated by the given linearly split polynomials. So, as expected, it is not generally
faster on pigeonhole principle formulae. Rather, it tends to find refutations faster than
the resolution closure algorithm provided the instances have a rich linear structure.

Whereas resolution closure algorithms tend to produce many redundant clauses (see [27,
Sect. 4.3.1]), resolvents learned in CDCL are non-redundant, i.e., the learned clauses are
not implied by smaller clauses with respect to the ordering of the literals. Algorithm 5.4
uses more advanced reasoning than classical resolution. However, it is guided by a very
simple strategy, namely “derive narrow polynomials first”. Clearly, Algorithm 5.4 in its
current form does not reach the versatility of modern CDCL-based solvers. For instance,
CryptoMiniSat is able to solve all instances in Table 4.1 and Table 5.1 within a few
seconds. However, on the two largest problems in Table 5.1, Algorithm 5.4 does actually
outperform Glucose. Furthermore, Algorithm 5.4 outperforms MiniSat on all largest
instances of tseitin in Table 5.1. Because Glucose and MiniSat achieve comparable
results, we can see that the instances of tseitin are favourable to algebraic processing.

1The latter two benchmarks are available at: www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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Table 5.1: The execution time of RCA, Algorithm 5.4, and SAT solvers

Instance CNF RCA Algorithm 5.4 CMS Glucose MS

#vars #clauses sec sec #lin sec sec sec

aim-100-1-6-no-1 100 160 5.25 3.8 12 0.01 0.0 0.0
aim-100-2-0-no-1 100 200 17.84 38.91 5 0.01 0.0 0.0
php-4-3 12 22 0.96 35.44 6 0.01 0.0 0.0
php-5-3 15 35 3.95 369.43 9 0.01 0.0 0.0
php-8-3 24 92 209.59 >1500 0.01 0.0 0.0
dubois22 66 176 29.52 0.34 44 0.01 0.0 0.0
dubois25 75 200 33.22 0.42 50 0.01 0.0 0.0
dubois30 90 240 45.32 0.77 60 0.02 0.0 0.0
dubois50 150 400 97.26 1.64 100 0.01 0.0 0.0
tseitin-2-15 43 112 194.41 0.15 30 0.01 0.0 0.0
tseitin-2-30 88 232 274.07 0.73 60 0.01 0.0 0.0
tseitin-2-40 118 312 322.18 1.11 80 0.01 0.0 0.0
tseitin-8-9 127 448 >1500 54.68 72 2.12 0.47 83.22
tseitin-9-9 144 512 >1500 82.71 81 1.61 1.19 262.00
tseitin-10-10 180 648 >1500 184.02 100 1.3 5.95 >1500
tseitin-10-11 199 720 >1500 241.09 110 1.33 31.63 >1500
tseitin-11-11 220 800 >1500 338.08 121 1.3 92.97 >1500
tseitin-11-12 241 880 >1500 450.63 132 1.22 52.16 >1500
tseitin-12-12 264 968 >1500 651.68 144 1.27 1033.3 >1500
tseitin-13-13 312 1152 >1500 1002.96 169 1.21 1200.01 >1500

s-Resolution vs. CDCL SAT Solving

The purpose of Algorithm 5.4 is to study enhanced reasoning into which DPLL or
CDCL techniques can be incorporated. As a next step, to make the current method
more powerful, we need to combine modern backtracking-based search algorithms for
SAT with s-resolution, or with sophisticated techniques involving Gaußian elimina-
tion such as in [105]. Note that Algorithm 5.4 targets instances containing many
XOR constraints. Because CNF encodings of many symmetric cryptosystems, e.g., of
substitution-permutation networks, contain a large number of linear relations, Algo-
rithm 5.4 and its improvements can be used in algebraic cryptanalysis of these ciphers.

Below we present a class of examples where s-resolution with s ≥ 1 is superior to
classical resolution. These examples are generated by Algorithm 5.1. To encode the
resulting sets of linearly split polynomials in CNF, we used the same approach as in
Example 5.39.

Some results for benchmark examples of the above shape are presented in Table 5.2.
It contains the number of decisions (# decisions), both for CryptoMiniSat with enabled
Gaußian elimination and for Glucose, as well as the number of applications of the s-
resolution rule (# steps) that is sufficient to derive the contradiction. The symbol “-”
denotes that the item is unknown due to exceeding the timeout. Because the number
of decisions bounds the length of resolution proofs, the table gives us an overview how
difficult the instances for the classical resolution are. However, there exist short proofs for
the given instances in SRES. Note that we do not claim anything about the computability
of these proofs yet. For instance, the current version of Algorithm 5.4 cannot find these
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short s-resolution proofs within the timeout.

Table 5.2: The evaluation of CDCL methods on an s-resolution benchmark

CNF CryptoMiniSat Glucose s-res
#vars #clauses #decisions #decisions #steps

308 8905 987619 2164862 100
1262 8429 3266516 5011847 130
1661 11267 4680191 6672070 110
1961 13331 - - 150
2261 15565 9817729 14163825 170
2277 15615 5440028 8478117 190
2692 18535 1351701 2075519 210
2805 19339 - 10824240 230
3679 25445 5638667 6952647 250
3923 27203 5444029 10151267 270
3628 25065 787123 1308057 290
4061 27999 4012913 6240094 330
4105 28285 3960929 5547085 310
6401 43367 - - 400

The instances in Table 5.2 are rather hard for resolution-based solvers. However, there
is no guarantee that the used SAT solvers found the shortest refutations.

This section finishes with some experiments using the above benchmark where the
SRES-proofs are actually computed by Algorithm 5.8. The instances are generated
by Algorithm 5.1 with the following parameters: the number of indeterminates n, the
maximal length of linear polynomials a, and the parameter k defined in the description
of Algorithm 5.1. Table 5.3 contains the timings (in seconds) for CryptoMiniSat with
enabled Gaußian elimination and Glucose. The left-most column provides the timings
of Algorithm 5.8.

From the results in Table 5.3 we see that the python implementation of Algorithm 5.8
is already in the range of the highly optimised C++ implementations of the SAT solvers.
In comparison to CryptoMiniSAT and Glucose, Algorithm 5.8 does not apply any form
of learning. Note that even if the benchmark is produced by an application of sres,
Algorithm 5.8 does not have any knowledge about the order of their applications or
what “right” decisions it should make. Nevertheless, our algorithm does not perform in
a very stable way yet. Even a slight modification of the parameters of the instances may
change its behaviour completely. We think this is due to our branching heuristic which
is still very preliminary. To become competative with other solvers, Algorithm 5.8 has
to keep up with the implementation details which make CDCL solvers powerful, e.g.
efficient lazy representations for linearly split polynomials, learning schemes (such as
one described in Example 5.58), and an efficient implementation of Algorithm 5.7 have
to be applied.
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Table 5.3: The evaluation of Algorithm 5.8 and SAT solvers on the benchmark generated
by Algorithm 5.1

Instances CNF Alg. 5.8 CMS Glucose

n a k #vars #clauses sec sec sec

50 20 50 240 7955 - 104.0 -
70 20 50 350 14587 - - -

500 10 50 1248 42861 - 44.8 17.5
1000 15 40 3471 207353 - 239.6 81.3
3000 7 30 4630 134561 2.6 0.2 3.0
3000 9 30 5743 262653 19.0 0.3 9.0
3000 10 30 6894 278593 48.3 2.9 6.5
4000 9 30 7633 355941 11.9 0.5 15.0
4000 10 30 9011 369797 63.7 0.7 10.6
4000 11 30 9920 392125 50.4 0.5 8.6
5000 7 40 7588 223229 23.3 0.2 5.5
5000 8 30 7951 361377 8.2 0.3 18.0
5000 8 40 8197 364909 37.3 0.5 15.6
5000 10 30 11231 468605 50.9 0.7 15.9
5000 11 30 12709 509789 51.4 0.9 12.4
6000 8 30 9420 423497 11.2 0.3 23.3
6000 8 35 9496 426321 23.3 0.4 23.6
6000 9 35 11521 544685 61.8 0.9 32.3
7000 6 60 9931 181121 26.6 0.2 3.5
8000 9 30 14641 710397 12.5 0.6 54.0
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Attacking AES and LED

Motivation In this chapter we discuss fault attacks on scaled variants of the block ci-
phers AES and the lightweight cipher LED (see Sections 2.7 and 2.8). Instead of crafting
fault equations manually, we introduce the tool AutoFault for creating automatic fault
equations. To push the automatization even further, the equations are derived automat-
ically from the hardware description of the cryptosystem. Moreover, we mention various
new ways how algebraic fault attacks (AFA) can be encoded. All in all, AutoFault has
these main features.

• AutoFault is automatic. Fault equations are derived automatically, i.e. they can
be significantly more complicated than ones derived by a human cryptanalist.
However, the constraints given by a “computer” may be more useful, i.e. they may
restrict the search space tighter than ad-hoc fault equations.

• AutoFault is user-friendly. AutoFault is taylored in a way such that launching
an AFA is very easy – it requires only a hardware description of the cipher. That
enables us, for example, to test newly designed block ciphers in an automatic way.
If the block cipher does not expose any vulnerability using AutoFault, it implies
a certain degree of security against fault attacks.

• AutoFault supports various encodings. AutoFault is able to parse an algebraic
description of a cryptosystem in ANF (i.e. a set of Boolean polynomials) that is
given by a cryptanalyst and mix it with the automatic encoding derived from the
hardware description.

Related work The standard reference for hand-crafting fault equations for AES and
LED is [65, 112]. A framework for automatically creating fault equations can be found
in [115]. The secret is determined by solving the set of constraints describing the cryp-
tosystem under attack, i.e. an algebraic representation has to be created. In contrast
to [115], AutoFault uses hardware descriptions which are usually publicly available
(more details can be also found in [94]). Comparing AutoFault to statistical approaches,
e.g. in [48, 79], a successful AFA requires less fault injections, but of higher precision.
Countermeasures against fault attacks include low-level approaches like adding shields
to cover metallization levels [77], placing sensors in the circuitry [95], or higher-level
methods such as error-detecting codes [66]. To the best of our knowledge, AutoFault is
the first approach to break LED-64 using no “manual” cryptanalytic information (that
is, without manually derived constraints beyond the circuit or the fault descriptions).
This chapter is based on [28,29,46].
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Structure and contents In Sect. 6.1 and 6.2 we give a brief overview of the block ciphers
AES, ssAES, and LED. In Sect. 6.3 we provide sufficient details how to apply a practical
AFA using AutoFault on these ciphers. The chapter is concluded by Sect. 6.4 where a
variety of AFA experiments derived by AutoFault under different attack assumptions
are presented.

6.1 Description of AES

AES (the Advanced Encryption Standard) is a family of block ciphers based on sub-
stitution permutation networks (see Example 2.36). In the following, we focus only on
its 128-bit variant, i.e. AES-128 which has 128-bit long keys and blocks and consists of
10 rounds. In this chapter we mean by AES not the whole family but only its 128-bit
version. The attacks presented in the subsequent sections can be easily generalized to
its other versions. In particular, ssAES (Small Scale AES) defined in [31] is a family of
scaled versions of AES depending on a size of its state and the number of rounds. The
small versions of AES are used for benchmarking of the attacks because they reflect the
structure of the full AES.

The descriptions of the ciphers in this section are based on [36] and [31], where the
complete specifications can be found. We do not discuss all modifications of the cipher.
Instead, we give a brief overview of the full AES. The other variants of ssAES are similar.
AES consists of 10 rounds, and its state is arranged column-wise in a 4 × 4 matrix of
bytes s1, . . . , s16, i.e. the state s is represented by the matrix

s =


s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15
s4 s8 s12 s16

 .
Let us mention the notation that is used for ssAES. The cipher ssAES-a-b-c-d denotes

a small version of AES with the state matrix of size a × b containing c-bit words and
d rounds. We write only ssAES-a-b-c if the number of the rounds is known from the
context. For instance, ssAES-2-2-4 stands for AES with a state of 2 × 2 entries, where
each entry is a 4-bit nibble. The fully-fledged AES would be written as ssAES-4-4-8-10
in this notation.

Bytes can be written in the hexadecimal numeral system as two nibbles, e.g. the hex
number 0B corresponds to the binary word 00001011. Moreover, the bytes are considered
to be the elements of the finite field F28 of 256 elements. As usual, individual round keys
are established during a key schedule phase. The details of the key schedule of AES are
not important in our context, and we refer the reader to the full specification in [36].

Next we recall the round functions used in AES.

• SubBytes. Each byte x of the state matrix is replaced by S(x), where S : F28 → F28

is a non-linear function defined by S(x) = A · x−1 + b with a constant matrix A
and a constant vector b, and x−1 denotes multiplicative inversion of x ∈ F28 .
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• ShiftRows. The ith row of the state matrix (with i = 1, 2, 3, 4) is shifted cyclically
to the left by i− 1 bytes.

• MixColumn. Each column v of the state matrix is replaced by M · v, where

M =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 .
• AddRoundKey. Each byte of the state matrix is added to the corresponding byte

of the round key. The addition is done in F28 .

6.2 Description of LED

LED is an example of the family of substitution permutation networks that is lightweight,
i.e. the cipher is taylored for a usage in a limited environment. By LED we refer here to
its 64-bit variant, i.e. to LED-64. For a complete specification, we refer to [49].

A state of LED has 32 rounds and is arranged row-wise in a 4 × 4 matrix of nibbles
(i.e., of elements of F24). Recall that the nibbles correspond to hex numbers, e.g. C
corresponds to the binary word 1100. The state s is represented by the matrix

s =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 .
LED is optimised for hardware and is very compact. Among other features, we point

out that LED has no key schedule. The round functions of LED are of the following
types.

• AddConstant. The LED round 6-bit constant are defined for each round. From
the LED round constant two nibbles x and y are derived. The following matrix A
is then added to the state matrix.

A =


0 x 0 0

1 y 0 0

2 x 0 0

3 y 0 0

 .
• SubCell. Each byte x of the state matrix is replaced by S(x) where S : F24 → F24

is a non-linear map defined by a look-up table.

• ShiftRows. For i ∈ {1, 2, 3, 4}, the ith row of the state matrix is shifted cyclically
to the left by i− 1 bytes.
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• MixColumnsSerial. Each column v of the state matrix is replaced by M ·v, where

M =


4 1 2 2

8 6 5 6

B E A 9

2 2 F B

 .
• AddRoundKey. Each byte of the state matrix is added to the corresponding byte

of the key (in the beginning of the encryption and always after 4 rounds).

6.3 An Automatic Construction of AFA

Algebraic fault attacks on iterated block ciphers have been already described in Ex-
amples 2.41 and 2.42. In this section, we improve the framework in Example 2.42 such
that attacks on AES, ssAES and LED become more powerful.

Let us start with a general improvement of the attack in Example 2.42. The improve-
ment in the next example is inspired by the meet-in-the-middle concept.

Example 6.1. In the setting of Example 2.42, let us consider a differential fault attack
(DFA) based on the following diagram. Notice the directions of the arrows in the diagram
which induce a different encoding of the last rounds.

p→ Round 1
a2−→ . . .

ar−1−−−→ Round r − 1
ar←− Round r ← c

↑ ↑ ↑
k → k1 → . . . → kr−1 → kr

↓ ↓ ↓

p→ Round 1
a2−→ . . .

a′r−1−−−→ Round r − 1
a′r←− Round r ← c′

E

The state ar−1 (or the state a′r−1) is propagated to the output of the round r − 1.
The output variables of the round r − 1 are set equal to the propagation of the correct
ciphertext c (or the faulty ciphertext c′) backwards to ar (or a′r). 4

The only difference between Example 2.42 and 6.1 is the “direction” of the workflow in
the last rounds. The resulting algebraic description of the attack has a more convenient
encoding in ANF because the substitution chain is broken down into two pieces. Thus
this workflow tends to produce better CNF encodings as well.

There are three main models how to encode a part of the circuit (and consequently
the whole attack such as one in Example 6.1) into CNF. In the following, we give a short
overview of functional, structural, and mixed models. For each model we describe how
to encode an AFA instance into CNF such that the result can be passed to a SAT solver.

Functional models The attack in the functional model is represented by a set of
Boolean polynomials, and the resulting polynomials in ANF are converted to CNF by
the methods explained in Sect. 4.2. A concrete encoding is given in Example 2.38.
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Structural models Similar to the functional model, the structural model of an AFA
consists of the last rounds of a fault-free and of a faulty encryption which are modeled
as a circuit. The difference between the fault-free and the faulty encryption is achieved
by adding XOR gates.

The functional (high-level) hardware description of the cipher (e.g., in the hardware
design language VHDL or in higher-level behavioral languages like SystemC) is a pre-
requisite for implementing the cipher in hardware. Thus we suppose that the description
is readily available. The round and key schedule information are automatically extracted
from the VHDL files and combined into a new VHDL file which contains only the parts of
the cipher required for the fault attack.

The new VHDL file which contains only the essential parts of the cipher is then synthe-
sized to a gate-level hardware description. For this purpose we may use a design compiler
(such as the Synopsis Design Compiler), a standard logic-synthesis tool broadly used
by industry.

The transformation to CNF is done by the Tseitin transformation (e.g. see [111]). The
Tseitin transformation is applicable in our setting because the model is a combinational
circuit, i.e. a circuit composed of logic gates with no memory. The Tseitin transformation
introduces a new variable for each internal line in the circuit and maps each logic gate
onto a set of clauses implementing its characteristic function. A simple application of
the Tseitin transformation is given in the next example.

Example 6.2. Consider a circuit consisting of one AND gate with Boolean inputs X1, X2

and one output X3. The characteristic function of the circuit is given by X3 ≡ (X1 ∧
X2), which corresponds to the set of clauses

{
{X̄3, X1}, {X̄3, X2}, {X̄1, X̄2, X3}

}
via the

Tseitin transformation. 4

Experiences from related fields such as SAT-based automatic test pattern generation
(for instance, see [15]) show that clauses generated by the Tseitin transformation signifi-
cantly reduce the solving time compared to a direct translation of a circuit to a Boolean
formula (e.g., by using term rewriting).

Mixed models Mixed models are obtained by combining functional and structural
models, i.e. the attack is divided into two (not necessary disjunct) parts, and each part
is encoded either in the functional or in the structural model. The underlying idea
regarding combining two models is to give the SAT solver additional information and
guide it towards a satisfying solution faster.

Since the functional and the structural models are both sufficient to model the entire
fault attack on their own, one can also add only part of one model to the other one. To
stress this out, we call such models partially mixed models.

6.4 Experiments

To evaluate structural and mixed functional-structural models, we focused on attack-
ing the medium-sized ssAES-2-2-4. Table 6.1 summarizes the size of the obtained fault
attack models in CNF by the different methods. Whereas the sparse representation uses
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the fewest variables, the other representations add new helper variables which, in turn,
decrease the number of clauses (see Sect. 4.2). For the initial experiments, we assume
that the fault occurs in the first nibble of the state, and that only one bit is faulty.

Table 6.1: Sizes of the formulae for the DFA models on ssAES-2-2-4

Models # Clauses # Variables

Functional (sparse representation) 24 515 288
Functional (dense representation) 13 936 1272
Structural 3 086 916

For experiments, the SAT solver antom [101] is used on a single core of an Intel Xeon
E5-2643 CPU clocked at 3.3 GHz. To compare the different attack models, we created
250 different random fault attacks instances and measured the time required from the
beginning of the solving process until the correct key was found. Figure 6.1 shows the
average runtime as well as the number of key candidates before the solution was found.

Figure 6.1: The solving time and the number of key candidates for several DFA models
on ssAES-2-2-4

It turns out that the structural fault attack model performs better. E.g. compare the
average solving time with the timings for the sparse or the dense encodings. Note that
the number of clauses in itself does not play an important role (e.g. compare the results
for the dense and the sparse encodings).

Combinations of structural with functional models are a little slower than the vanilla
structural model, but always faster than the functional model alone. When combining
the structural model with some clauses from the functional model into a partially mixed
model, the solving speed is slightly increased in comparison to the complete mixed model.
However, some partially mixed models give us sometimes the fastest solving speed.

The average number of key candidates (until the correct key is found) in our exper-
iments is between 4 and 5. However, there seems to be no correlation between the
number of key candidates and the solving time. Recall that the SAT solver traverses
the solution search space in a very complex manner, and it may be faster to discover
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Table 6.2: The size of CNF formulae corresponding to AFA.

Cipher Block Size # Rounds Formula size (# Clauses)

ssAES-2-2-4 16 bits 10 3 086
ssAES-4-4-4 64 bits 10 13 420
LED-64 64 bits 32 15 544

inconsistent key candidates than the correct key.

Based on later experiments, we decided to choose the structural model of AFA, and
we perform some more tests with ssAES and LED. Moreover, we tested AutoFault with
different fault models. AutoFault is applied to three different ciphers: two variants of
ssAES and the 64-bit version of the block cipher LED. Table 6.2 gives an overview of the
ciphers as well as the size of the CNF formulas corresponding to the attacks.

In the case of ssAES and LED, fault injections in different locations were simulated in
software. Consistent with work in [29], we consider faults in one nibble and in two neigh-
boring nibbles three rounds before the termination of encryption. For our experiments,
we require that either exactly one, exactly two, or up to four or eight bits are flipped.
(The last two scenarios correspond to “nibble faults” and “byte faults” in [64,116].)

Additionally, for the LED cipher we also consider two more advanced fault injections
to highlight the versatility of our approach. Firstly, a single bit is flipped anywhere
within the 64-bit input data. This could correspond to a timing-based attack where
the attacker increases the clock frequency (or decreases the supply voltage) until the
output of the cipher is incorrect. Note that the attacker may not actually know which
bit is affected. Secondly, we consider an attack where the entire first (or the first and the
second nibble) is corrupted (with up to 4 or 8 faulty bits, respectively). This corresponds
to a physical attack where the location of the fault can be narrowly controlled to a small
area, but the number of flipped bits is random. For these attacks, we randomly set the
number of actual faults to anywhere between 1 and the maximum number possible for
each case.

The averaged results for up to 10,000 automatically generated attacks (with an overall
timeout of 40 hours for each experiment) are shown in Table 6.3. All experiments were
run on an Intel Xeon E5-2643 CPU clocked at 3.3 GHz. Moreover, the distributions
of the solving times for the three ciphers are reported in Figures 6.2a, 6.2b and 6.3
(the minimum and the maximum solving times are indicated by the lines and the 50%
interquartile range are indicated by rectangles). Note that AutoFault terminates the
attack when the found key candidate was confirmed to be the correct key by simulation,
that is, the attacks indeed break the cipher.

Notice that AutoFault is able to find valid attacks for the considered ciphers, despite
the fact that it incorporates no cipher-specific cryptanalysis. This might be expected in
the case of ssAES, which has been designed as a synthetic benchmark for cryptanalysis
and is not recommended for use in actual cryptographic applications. However, it is
remarkable that a fully-fledged (though lightweight) cipher such as LED has so little
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Table 6.3: The solving times and the numbers key candidates for ssAES-2-2-4, ssAES-4-
4-4 and LED-64

Cipher and fault model Mean
solve time
(sec)

Average num-
ber of key can-
didates

ss
A
E
S
-2

-2
-4 1 bit, 1st nibble 16.46 5.16

1 bit, 1st/2nd nibble 16.39 7.61
2 bits, 1st nibble 16.32 11.93
2 bits, 1st/2nd nibble 17.98 25.76

ss
A
E
S
-4

-4
-4 1 bit, 1st nibble 9 574.61 620.26

1 bit, 1st/2nd nibble 7 173.82 324.18
2 bits, 1st nibble 26 357.30 170.40
2 bits, 1st/2nd nibble 23 651.00 55.00

L
E
D

-6
4

1 bit, 1st nibble 254.78 3 508.33
1 bit, 1st/2nd nibble 442.72 3 044.23
2 bits, 1st nibble 384.96 6 395.38
2 bits, 1st/2nd nibble 847.77 2 303.87
1 bit, any nibble 712.70 4 896.29
1 bit, after S-Box 127.66 6 858.65
≤ 4 bits, 1st nibble 365.78 7 051.83
≤ 8 bits, 1st/2nd nibble 762.79 1 163.36

resistance against AutoFault.

When comparing our results on LED-64 with earlier attacks on the same cipher, one
notices that the typical number of around 7,000 considered key candidates is inconsistent
with the much larger key candidate space size of 219− 226 reported in [65], even though
our DFA setting is essentially identical to the construction in [65]. This can be attributed
to two factors. Firstly, the key candidates in [65] may include inconsistent candidates as
well. Therefore, the actual number of consistent candidates may be lower than 219−226.
Secondly, we used the SAT solver in the incremental mode, i.e. it is possible that the
solver infers further information from conflict clauses that exclude not only one but
several invalid key candidates at once. If this happens, the attack needs less than one
iteration per key candidate, in contrast to the conventional brute-force search.

With regard to the run time, it is not surprising that the necessary effort increases
significantly for larger states of an otherwise identical cipher (e.g. ssAES-4-4-4 vs. ssAES-
2-2-4). This is expected, and it is worth noting that the attack does not yet terminate
before timeout for the fully-fledged AES, i.e. for ssAES-4-4-8. However, the results for
ssAES is useful because they illustrate scalability as a function of the fault model.

The execution times for LED-64 via AutoFault are better than the several hours
reported in [64], but worse than the timings given in [116]. Compared to [64], Auto-
Fault uses a more compact differential models where the attack-unaffected cipher parts
are skipped, and also employs a more efficient CNF formula construction out of com-
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binational circuitry (rather than from the functional description of the cipher). Zhao
et al. [116] employed special constructions (with reverse models of cipher rounds) and
added clauses derived from fault-affected differentials to facilitate the search. Approxi-
mately one order of magnitude slowdown appears to be adequate for a fully-automatic
attack construction without any cipher-specific analysis.
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Figure 6.2: Time to find the secret key for the ssAES cipher

The work on the tool AutoFault is still ongoing. Using the latest parallel SAT solvers
in AutoFault, it is possible to break full-scale AES (e.g. using 2 fault injections) or other
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Figure 6.3: Time to find the secret key for the LED-64 cipher w.r.t. the injections in the
various locations

state-of-the-art ciphers such as PRESENT defined in [19] (e.g. using 5 fault injections)1.

1These results follow from an yet unpublished article of M. Gay et al. which was submitted to FDTC
2019.
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Attacking SHA using Programmatic
SAT Solvers

Motivation In this chapter we introduce a new approach to algebraic fault attacks
(AFA) using programmatic SAT solvers (see Sect. 2.5 and 2.8). The programmatic
interface is used to strengthen the performance of the base solver on the PREIMAGE
problem (defined in Sect. 2.7) of the SHA families. While encoding SHA into CNF in
the similar manner as in [91], we observed that the resulting CNF does not perform well
with the respect to the native Boolean Constraint Propagation (BCP, see Algorithm 2.4)
of the SAT solver MapleSAT [80]. This problem is captured by the notion of a special
version of general arc consistency (GAC).

There are two straightforward solutions to this problem – either we change the CNF
encoding, or we modify the propagation mechanism. On one hand, the latter solution is
not easily applied in the base solver because the BCP architecture is deeply ingrained
in modern SAT solvers. On the other hand, changing the CNF encoding such that
it maintains GAC results usually in a larger CNF formula. However, the propagation
can be easily enhanced via the programmatic interface. Moreover, the programmatic
interface can implement other features of the attack (e.g. checking of message candidates,
etc.) that has to be taken care of otherwise from the “outside” of the solver.

Related work The initial work on fault attacks on the SHA family goes back as far
as [78], where a differential fault attack (DFA) is applied on SHACAL-1 (i.e. a block
cipher adopting the structure of SHA-1). Authors of [51] extended the attack to SHA-1.
Because the structure of SHA-1 is more difficult than SHACAL-1, they needed more than
a thousand faults to derive a message. A fault attack on the HMAC setting of SHA-2
is proposed in [62]. There it is shown that message values of size n can be recovered
with approximately n/3 faults. An AFA on SHA-2 using SMT methods, namely the
constraint solver for the theory of quantifier-free bit-vectors STP, is presented in [50].
(For details on STP, see [43].) Our attack via the programmatic interface presented in
this chapter outperforms the other approaches in terms of the number of fault injections
and solving time. This chapter is based on [84].

Structure and contents In Sect. 7.1 we recall some parts from the theory of constraint
satisfaction problems. In Sections 7.2 and 7.3 descriptions of SHA-1 and SHA-2 hash
functions are given. In Sect. 7.4 we describe the inversion attack using programmatic
solvers. Namely, we explain its two basic components: the programmatic propagator
and the programmatic conflict analyzer. Experiments and results are given in Sect. 7.5.
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7.1 Preliminaries

The following definition is motivated by the notion of arc consistency in the field of
constraint satisfaction problems (CSP, see Sect. 2.6). We spell out a modified version of
general arc consistency (GAC) given in [7].

Definition 7.1. Let C be a set of clauses encoding a Boolean map ϕ, and let ri be an
inference rule of propositional logic. We say that C ri-maintains input/output GAC
if for any assignment α of the variables corresponding to the input variables of ϕ, the
assignment of the variables corresponding to the output variables of ϕ can be derived
from C|α by applying ri.

In order to use the “full” strength of a solver based on a rule of inference, we have
to choose an encoding that maintains input/output GAC. The following example illus-
trates the core of the problem of the encodings that do not maintain GAC under unit
propagation. (Recall that unit propagation (UP) is the default propagation procedure
in SAT solvers.)

Example 7.2. Consider the pseudo-Boolean constraint x1 +x2 ≤ 0 with x1, x2 ∈ {0, 1}
and integer addition “+”. We can encode this constraint into a CNF formula C by using
a half-adder with inputs x1 and x2 and by forcing the outputs to be zero. The half-adder
relations for the carry bit A and the sum bit B can be described as A ↔ X1 ∧X2 and
B ↔ X1 ⊕X2. The final encoding of the formula

(A↔ X1 ∧X2) ∧ (A↔ X1 ⊕X2) ∧ (Ā ∧ B̄)

into CNF is equal to C =
{
{X̄1, X2}, {X1, X̄2)}, {X̄1, X̄2}

}
. It is clear that X1 and X2

should be set to zero. But these values are not discovered by applying BCP on C. 4

7.2 Description of SHA-1

SHA-1 was designed by NSA and standardized by NIST in 1995 (see the standard
in [88]). It was widely used in many applications, but after successful collision attacks
reported in [107] 1, security practitioners moved away to stronger alternatives such as
SHA-2 or SHA-3. However, SHA-1 is still considered resistant against preimage and
second preimage attacks.

SHA-1 is an iterated hash function family based on the Merkle-Damg̊ard construction
(see Example 2.37), where each message block has 512 bits. Each block is given to the
SHA-1 compression function that outputs 160 bits. We recall only a part of the SHA-1
specification. For the full description of SHA-1, we refer to [88].

The message expansion relation for expanding 16 initial message 32-bit words w0, . . . ,
w15 to 80 32-bit words w0, . . . , w79 is defined by

wi = (wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16)≪ 1, for i ∈ {16, . . . , 79}. (I-M)

1A practical collision attack on SHA-1 can be found at https://shattered.io/
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where “≪ i” denotes left rotation by i ∈ N positions. The internal state of SHA-1 has
160 bits, and it is divided in five 32-bit words ai, . . . , ei for each iteration i ∈ {0, . . . , 79}.
The updating function for the iteration i = 0, . . . , 79 is defined as follows

(ai+1, bi+1, ci+1, di+1, ei+1)←(
Fi(bi, ci, di)� ei � (ai≪ 5)� wi � ki, ai, bi≪ 30, ci, di

)
, (I-U)

where “�” denotes integer addition modulo 232 and ki is an iteration-specific constant.
The Boolean map Fi : F32

2 × F32
2 × F32

2 → F32
2 changes after every 20 rounds and is one

of the following functions. (The operations, like “∧” or “¯”, are applied bit-wise.)

• Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ z)

• Xor(x, y, z) = x⊕ y ⊕ z

• Maj(x, y, z) = (x ∧ y)⊕ (y ∧ z)⊕ (x ∧ z)

7.3 Description of SHA-256

In this section we briefly describe the standard hash function family of SHA-2 [38].
More precisely, we focus only on SHA-256. (In the following, we use SHA-2 and SHA-256
interchangeably.) The structure of SHA-2 is similar to SHA-1 (i.e. SHA-2 is an iterated
hash function family as in Example 2.37), but its updating function and its message
expansion procedure are more complex. The input block size is 512 bits and it has
64 iterations. Using the following message expansion relation, 16 32-bit input words
w0, . . . , w15 are expanded to 64 32-bit words w0, . . . , w63.

wi = σ1(wi−2)� wi−7 � σ0(wi−15)� wi−16, for i ∈ {16, . . . , 63}, (II-M)

where σ0 and σ1 are Boolean maps F32
2 → F32

2 defined as follows.

σ0(x) = (x≫ 7) ⊕ (x≫ 18)⊕ (x� 3),
σ1(x) = (x≫ 17) ⊕ (x≫ 19)⊕ (x� 10),

where “� i” denotes rotation to the right by i ∈ N positions. The internal state of SHA-
2 has 256 bits consisting of eight 32-bit words labelled as ai, bi, . . . , hi for each iteration
i. The updating function is defined as follows.

(ai+1, bi+1, ci+1, di+1, ei+1, fi+1, gi+1, hi+1)←
(t1 � t2, ai, bi, ci, di � t1, ei, fi, gi) (II-U)

with
t1 = hi � Σ1(ei)� Ch(ei, fi, gi)� ki � wi,
t2 = Σ0(ai)� Maj(ai, bi, ci),

Σ0(x) = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22),
Σ1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25),

where the functions Ch, Maj, and � are the same as for SHA-1, ki denotes the SHA-2
constants, and wi denotes the processed expanded message block.
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7.4 Algebraic Fault Attacks on SHA

In this section we propose a programmatic SAT solver-based approach to algebraic
fault attacks. As our target we choose the problem PREIMAGE (defined in Sect. 2.7) of
the SHA-1 and the SHA-2 family. However, the method general enough such that it can
be applied in other primitives under various cryptanalytic scenarios.

An instance of the problem PREIMAGE is encoded in CNF as well as in a programmatic
interface of a SAT solver. Using the programmatic encoding, we extend the Boolean
constraint propagator (BCP) to a programmatic propagator and the conflict analysis
extension to a programmatic conflict analyzer.

• Programmatic propagator. Given a Boolean map ϕ over the input variables x and
the output variables y, there sometimes exists a set of clauses Cϕ which encodes
ϕ such that the standard BCP does not propagate the values assigned to x all
the way to y, i.e. Cϕ does not UP-maintain input/output GAC (see Def. 7.1). In
this case, the programmatic propagator directly sets the bits corresponding to y
by calculating ϕ(x) in the programmatic interface.

• Programmatic conflict analyzer. The programmatic conflict analyzer verifies whet-
her a candidate for the solution that is found by the base solver is valid, i.e. if it
satisfies all the constraints. If the solution is not valid, a conflict clause is added
to the conflict clause database of the solver. Otherwise, the validated solution is
returned by the solver. The analyzer is called in the inner loop of the SAT solver,
and thus it takes advantage of its inherent incrementality.

After a high-level description of the individual components, we focus on details regard-
ing the attack on the SHA family. The SHA compression functions use multi-operand
additions. The encoding of the adders in [90] gives a very compact CNF. However, the
BCP is not very efficient for this type of encodings (see Example 7.2). Namely, it does
not UP-maintain input/output GAC. That is why we implement a SHA propagator that
strengthens the BCP. The programmatic propagation is called in the main search loop
of the solver after BCP is done, and no conflicts are detected. The callback function
then checks whether there exist any other bits that could be set. In the next example
we illustrate how it is done. (Note that the example is rather artificial. In practise, we
deal with larger Boolean functions.)

Example 7.3. Consider the Boolean function ϕ : F2 × F2 → F2 given by (x1, x2) 7→
x3 := x1 ⊕ x2. Assume that a set of clauses C which encodes ϕ is given to a SAT solver
that assigns X1 7→ True and X2 7→ False. If X3 has not been set, the programmatic
propagator adds a clause {X̄1, X2, X3} to C that encodes the implication X1∧X̄2 → X3.
The implication forces the solver to set the output bits in the next cycle. 4

Let us look closer at the SHA conflict analyzer. The SHA conflict analysis is invoked
when the BCP reaches a state where all the variables corresponding to the message are
assigned, and there is no conflict. The analyzer identifies the message bits and checks
that the message hashes to the given target. If not, a conflict clause that blocks the
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current spurious message bits is returned to the solver. Because the solver has the reason
clauses that led to the partial assignment, it can further optimize learned clauses.

In the following we describe how to recover the last chaining value by a fault attack.
Even though the setting of the attack seems to be a bit artificial (in the sense that
there is no secret key stored in the implementation of the hash function), the attack is
a foundation stone for a forgery attack on message authentication codes HMAC created
from SHA. (See [50, Sect. 4] for details on the attack, see [108, Sect. 4.4.] for details on
HMACs). The number wH(s) denotes the Hamming weight of a string s.

In the attack described in Algorithm 7.1, we target the last 16 rounds of the SHA-1
compression function. The message expansion is invertible, provided we have 16 con-
secutive words (see Equation (I-M)). This means that recovering the last 16 expanded
message words enables us to recover all message bits. Therefore we inject faults to the
input of the last 16 rounds, and more particularly in b64. This fault location is more
desirable because of the way the fault propagates in the next rounds. For more details
we refer to [51].

Let f be the compression function of SHA-1. Let f1..64 (resp. f65..82) be the Boolean
map representing the first 64 rounds of f (resp. the last 16 rounds of f). Thus we
have the following composition f = f65..80 ◦ f1..64. In Step 4 we inject the fault δi. Step
7 encodes the instance of the algebraic attack C together with the fault equations Ci.
Steps 8–16 corresponds to an integration of the SAT solver with the SHA propagator
and the SHA conflict analyzer.

Rewriting Algorithm 7.1 into the setting of SHA-2, we get an attack on SHA-2 in
Algorithm 7.2. (Algorithm 7.2 uses the same notation introduced in Algorithm 7.1.) We
first target the last four rounds. Thus we get a set of candidates for (w61, . . . , w64). Then
we target the last 8 rounds in order to get a set of candidates for (w57, . . . , w60). The
injection procedure is repeated in round 52 and 48 such that we get enough information
about w65, . . . , w80. This multi-stage attack is inspired by the approach in [50].

7.5 Experiments

On one hand, there are SAT solvers such as CryptoMiniSAT [106] that implement a XOR

reasoning which could be beneficial in solving cryptographic problems based on SHA-1
and SHA-2. On the other hand, SMT solvers that handle bit-vectors such as STP [43]
are good candidates for solving these kinds of instances as well. However, according to
the results in [85], MapleSAT [80] outperforms all of them on SHA-1 preimage instances.

Because the SHA-1 preimage instances are similar to the premimage algebraic fault
instances, we decided to use MapleSAT to implement the programmatic callbacks in C++.
(We also experimented with Opturion CPX [92], which is a constraint solver known from
the Minizinc challenge in 2015 that combines CSP and SAT solving techniques. It has
turned out that Opturion CPX could solve only a small number of our AFA instances.)

Furthermore, we have also decided to use the multi-armed bandit restart (MABR)
policy described in [85] for MapleSAT, which adds a performance gain on cryptographic
instances. We run tests under various assumptions on the number of the injected faults
and on the maximal weight of the faults. For each experiment we generated 100 random
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Algorithm 7.1 AFA-SHA-1 (An AFA on SHA-1)

Input: The compression function f of SHA-1, the number of faults k ∈ N, the maximal
weight of faults d ∈ N, a 160-bit digest h such that there exists a 512-bit message
m with f(m) = h.

Output: A 512-bit word m′, such that f(m′) = h.

1: Let C be a CNF encoding of f65..80(x) = h.
2: for i = 1, . . . , k do
3: Generate a random fault value δi with wH(δi) ≤ d.
4: hi := f65..80(f1..64(m)⊕ δi)
5: Let Ci be a CNF encoding of hi = f65..80(x⊕ δi).
6: end for
7: Q := C ∧

∧
Ci

8: repeat
9: Find a model α for Q.

10: Extract the assignment for w65, . . . , w80 from α.
11: for j = 64, . . . , 1 do
12: wj := (wj+16≫ 1)⊕ wj+13 ⊕ wj+8 ⊕ wj+2

13: end for
14: m′ := w0‖ . . . ‖w15

15: Q := Q∧ c, where c denotes a clause that blocks the assignment corresponding to
m′.

16: until f(m′) = h
17: return m′

message-target pairs. The timeout was set to 4 hours for SHA-1 instances and 12 hours
for SHA-2 instances. All experiments mentioned in these sections were executed on Intel
Xeon CPUs at 3.2 GHz with 16 GB of RAM.

Table 7.1 shows the results of applying AFA on SHA-1 and SHA-2. Its rows correspond
to the maximal weight of the injected faults. Its columns correspond to the number of
injected faults during the attack. Starting from a single bit, going to a nibble, a single
byte, single word to the 32-bit random fault model. Each element in Table 7.1 represents
the number of instances (out of 100 randomly generated AFA instances) that our solver
was able to solve within the time limit.

From Table 7.2a we can see that we are able to compute the message bits with as
few as 8 faults in the single byte fault model. In previous attacks on SHA-1, Hemme et
al. [51], apply a DFA that uses 1002 faults. In the same fault model as in [51] (i.e. the
32-bit fault model), we use only 11 faults.

Moreover, we were able to compute the SHA-2 target bits using 32 faults in the 24-bit
fault model (see Table 7.2b). While Hao et al. [50] use 65 faults in the 32-bit random
fault model, our method is able to find the message by injecting 48 faults in the same
fault model.

Next we take a look at the performance of the programmatic AFA solver on solving the
SHA algebraic fault instances. Figure 7.1 depicts the cactus plot of the vanilla MapleSAT
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Algorithm 7.2 AFA-SHA-2 (An AFA on SHA-2)

Input: The compression function f of SHA-2, the number of faults k such that k is
divisible by 4, the maximal weight of faults d, a 256-bit digest h such that there
exists a 512-bit message m such that f(m) = h.

Output: A 512-bit message m′, such that f(m′) = h.

1: Let C be a CNF encoding of f49..64(x) = h.
2: Φ := ϕ
3: for j ∈ {60, 56, 52, 48} do
4: for i = 1, . . . , k/4 do
5: Generate a random fault value δi with wH(δi) ≤ d.
6: hi := f(j+1)..64(f1..j(m)⊕ δi)
7: Let Ci be a CNF encoding of hi = f(j+1)..64(x⊕ δi).
8: end for
9: end for

10: Q := C ∧
∧
Ci.

11: repeat
12: Find a model α for Q.
13: Extract the assignment for w49, . . . , w64 from α.
14: for j = 48, . . . , 1 do
15: wj := wj+16 � σ1(wj+14) � wj+9 � σ0(wj+1), where “�” denotes subtraction

modulo 232.
16: end for
17: m′ := w0‖ . . . ‖w15

18: Q := Q∧ c, where c denotes a clause that blocks the assignment corresponding to
m′.

19: until f(m′) = h
20: return m′

solver and the MapleSAT solver with various extensions in the programmatic interface.
We have turned each of the programmatic functionality on and off to see which of them
contributes more to the performance of the solver. There are four solvers compared in
the plot. The base version of MapleSAT, MapleSAT with the SHA propagator, MapleSAT
with SHA conflict analyzer, and MapleSAT with both of these callbacks.

The timings in Figure 7.1 corresponds to the 32-bit fault model with 11 faults injected
in the case of SHA-1 and 48 faults in the case of SHA-2. The plot shows that the SHA
conflict analyzer can solve two more instances in SHA-1 and 14 more instances in SHA-2.
However, the main performance boost is caused by the SHA programmatic propagation,
which can solve 6 more instances in the case of SHA-1, and 28 more instances in the
case of SHA-2.

Let us compare the total timings for solving all the instances between MapleSAT and
fully programmatic MapleSAT. If we set the runtime of the timed-out instances to the
time limit, we can see a 2.48x speedup for SHA-1 and 7.73x speedup for SHA-2. If we
use the PAR-2 method (i.e. penalizing the timed out instances by setting their runtime
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Table 7.1: The number of solved AFA instances out of 100 for different number of faults
and maximal weight of the faults

Number of faults

8 11 12 16 20

F
au

lt
w

ei
g
h
t

1 65 69 70 64 43

2 85 82 82 73 61

4 95 95 94 87 72

8 100 100 100 91 86

16 90 100 100 90 80

32 75 100 100 89 75

(a) SHA-1

Number of faults

32 40 48 56

F
au

lt
w

ei
g
h
t

8 28 20 8 0

12 32 21 8 2

16 69 60 28 9

20 90 75 31 10

24 100 95 72 20

28 95 71 70 34

32 71 82 100 48

(b) SHA-2

to double the time limit), we see a 3.16x speedup in SHA-1 and 14.3x speedup in SHA-2.
Our results show the versatility of the programmatic SAT solver architecture in AFA.

By taking a state-of-the-art SAT solver, we are able to extend it with programmatic
functionality such that its performance is improved. Observing Table 7.1, we sometimes
see that more injected faults does not imply that more instances are solved. At a first
sight it seems to be counterintuitive, because adding more faults helps restrict the search
space. However, adding a new fault equation, the number of clauses in the input grows
rapidly (especially in the case of SHA-2), which may crucially slow down the propagation.
Thus there is a trade-off between pruning the search space by new fault equations and
the size of the resulting formula.
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(a) 32-bit fault model AFA on SHA-1

��

�����

������

������

������

������

������

������

������

������

�� ��� ��� ��� ��� ����

�
��
�

�
��
�

��������������������������

��������
�����������������������

�����������������������������
��������������������������

(b) 32-bit fault model AFA on SHA-2

Figure 7.1: Cactus plots comparing MapleSAT with the MapleSAT after adding each of
the programmatic callbacks. Each data point (x, y) ∈ N × Q on this plot
means that x algebraic fault instances are solved in under y seconds.
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