
Public-Key Cryptography

Based on

Simple Semirings

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät

der

Universität Zürich
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Abstract

The discrete logarithm problem is the basic ingredient of many public-key
cryptosystems. It can be stated as follows: Given a cyclic group (G, ·) of
order n, a generator g of G, and another element h ∈ G, find the unique
integer a ∈ [0, n) such that h = ga. The integer a is called the discrete
logarithm of h to the base g.

There are key agreement protocols, public-key encryption schemes, and
digital signatures employing the discrete logarithm problem. One example
is the Diffie-Hellman key agreement protocol [DH76]. It allows two parties,
A and B, to agree on a secret key over an insecure channel. In order to
achieve this goal they fix a finite cyclic group G and a generator g of G.
Then A and B pick random integers a, b respectively and exchange hA = ga

and hB = gb. Finally they compute ha
B = gba and hb

A = gab, and since
gab = gba this element can be used as their secret key.

It is clear that solving the underlying discrete logarithm problem is suffi-
cient for breaking the Diffie-Hellman protocol. For this reason one has been
searching for groups in which the discrete logarithm problem is considered
to be a computationally hard problem. Among the groups that have been
proposed as candidates are the multiplicative group of a finite field and the
group over an elliptic curve. It should however be pointed out that the
infeasibility of the discrete logarithm problem has not been proved in any
concrete group.

Discrete logarithm based cryptosystems can be generalized in the frame-
work of semigroup actions (see e.g. [Mon02, Maz03, MMR07]). Here, an
action

ρ : A×X → X , (a, x) 7→ ρ(a, x) = a . x

of a semigroup A on a set X substitutes the role of the exponentiation
(Zn, ·)×G→ G in a cyclic group G of order n. The semigroup action must
satisfy (at least) the following two conditions.

• The semigroup action discrete logarithm (sdl) problem is hard: Given
elements g, h ∈ X such that h ∈ A . g, the orbit generated by g, find
an element a ∈ A such that h = a . g.

• There is a way to generate pairs of commuting elements of A.

It is an open problem at this point whether the sdl problem is harder to
solve than the discrete logarithm problem. If this is true, the parameter sizes
could be reduced in comparison to the discrete logarithm based protocols,
leading to more efficient cryptosystems. To explore this issue it is clearly
beneficial to create and study many examples.
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A novel and promising approach to build interesting semigroup actions
(proposed in [MMR07]) is based on finite simple semirings. A concrete
example of such a construction is a two-sided action of matrices over a
semiring. In order to avoid a Pohlig-Hellman-type reduction attack it is
important that the semiring involved is simple.

The theoretical main result of this thesis is a full classification of finite
simple semirings, analogous to the Wedderburn-Artin theorem. The result
provides numerous examples which come from monoid endomorphism semi-
rings of finite lattices. Due to this result it is possible to construct very
large simple semirings using moderate computational resources, and this
leads to new constructions of interesting semigroup actions for public-key
cryptography. It will require further research to analyze these new systems.

The present thesis deals basically with three matters:

• We discuss semigroup actions and their use in cryptography, aiming
to clarify the requirements needed to construct secure cryptosystems.

• We introduce semirings and give the classification of finite simple semi-
rings up to isomorphism.

• We study the applications of simple semirings to the construction of
semigroup actions for cryptography.

The first chapter introduces encryption schemes and digital signature
schemes, including rigorous definitions of their security. Some discrete log-
arithm based cryptosystems and their underlying security assumptions will
be discussed.

The second chapter is about cryptography based on semigroup actions.
We present generalizations of the discrete logarithm based cryptosystems,
and discuss the hardness of the underlying semigroup action problems.
Moreover, we show that many proposals of cryptosystems in the literature
of the last decade can be embedded into the setting of semigroup actions.

The third chapter deals with semirings and gives a full classification of
finite simple semirings with zero. The result states that a finite semiring
of order > 2 with zero which is not a ring is simple if and only if it is iso-
morphic to a “dense” subsemiring of the endomorphism semiring of a finite
idempotent commutative monoid. We also investigate those subsemirings
further, considering e.g. the question of isomorphism.

In the final chapter we discuss the applications of the classification for
cryptography: We present different methods to construct semigroup actions
based on simple semirings.



Zusammenfassung

Das Diskreter-Logarithmus-Problem (dl-Problem) ist die Grundlage für
viele neuere Verfahren der Kryptographie. Es lautet: Gegeben seien eine
zyklische Gruppe (G, ·) der Ordnung n, ein Erzeuger g von G und ein weite-
res Element h ∈ G, gesucht ist die eindeutig bestimmte ganze Zahl a ∈ [0, n)
mit h = ga. Diese Zahl a wird diskreter Logarithmus von h zur Basis g
genannt.

Auf dem dl-Problem basieren Systeme für Schlüsselvereinbarungen,
Public-Key Verschlüsselungen und digitale Signaturen. Ein Beispiel ist das
Diffie-Hellman-Protokoll zur Schlüsselvereinbarung [DH76]. Es erlaubt zwei
Kommunikationspartnern, A und B, die über ein nicht abhörsicheren Kanal
kommunizieren, einen geheimen Schlüssel zu vereinbaren. Hierfür bestim-
men sie öffentlich eine endliche zyklische Gruppe G und einen Erzeuger g
von G. Dann wählen A und B zufällige Zahlen a bzw. b und tauschen die
Nachrichten hA = ga bzw. hB = gb aus. Schließlich berechnen sie ha

B = gba

bzw. hb
A = gab, und wegen gab = gba kann dieses Element als Schlüssel

verwendet werden.
Offenbar kann ein Angreifer, der die versendeten Nachrichten des Pro-

tokolls abhört, in Besitz des Schlüssels gelangen, wenn er das dl-Problem
lösen kann. Deswegen werden Gruppen verwendet in denen das dl-Problem
als rechnerisch möglichst schwierig angesehen ist, d.h. es sind keine effizien-
ten Algorithmen bekannt, die das dl-Problem lösen. Zum Beispiel wird die
multiplikative Gruppe eines endlichen Körpers oder die Gruppe über einer
elliptischen Kurve verwendet. Jedoch sollte betont werden, dass für keine
konkrete Gruppe bewiesen wurde, dass kein effizienter Algorithmus für das
dl-Problem existiert.

Das dl-Problem als Basis für kryptographische Verfahren kann mit-
tels Halbgruppen-Operationen verallgemeinert werden (siehe [Mon02, Maz03,
MMR07]). Dabei wird die Exponentiation (Zn, ·)×G→ G in einer Gruppe
durch eine Operation

ρ : A×X → X , (a, x) 7→ ρ(a, x) = a . x

einer Halbgruppe A auf eine Menge X ersetzt. Die Halbgruppen-Operation
muss dabei notwendigerweise folgende Eigenschaften haben:

• Das Analogon zum Diskreter-Logarithmus-Problem (sdl-Problem) ist
schwierig: Gegeben seien Elemente g, h ∈ X mit h ∈ A . g (die von g
erzeugte Bahn), gesucht ist ein Element a ∈ A mit h = a . g.

• Man kann Paare von kommutierenden Elementen von A erzeugen.

Es ist aktuell eine ungelöste Frage, ob das sdl-Problem schwieriger zu
lösen ist als das dl-Problem. Wäre dies der Fall, so könnte man die Param-
etergrößen im Vergleich zu den dl-basierten Protokollen reduzieren, was zu
effizienteren Verfahren führen würde. Um diese wichtige Fragestellung zu
untersuchen ist es hilfreich, viele Beispiele zu erstellen und zu studieren.
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Ein neuartiger und vielversprechender Konstruktionsansatz für interes-
sante Halbgruppen-Operationen (vorgeschlagen in [MMR07]) basiert auf
endlichen einfachen Halbringen. Ein konkretes Beispiel einer solchen Kon-
struktion ist eine zweiseitige Operationen von Matrizen über einem Halbring.
Um einen Pohlig-Hellman-artigen Angriff via Reduktion zu vermeiden ist es
wichtig, dass der zugrundeliegende Halbring einfach ist.

Das theoretische Hauptresultat der vorliegenden Dissertation ist eine
vollständige Klassifikation von endlichen einfachen Halbringen, analog dem
Satz von Wedderburn-Artin. Das Resultat liefert zahlreiche Beispiele für ein-
fache Halbringe, nämlich Monoidendomorphismen-Halbringe von endlichen
Verbänden und gewisse Unterhalbringe hiervon. Dadurch ist es mit wenig
rechnerischem Aufwand möglich, sehr große einfache Halbringe zu erstellen,
und dies führt zu neuen Konstruktionen von interessanten Halbgruppen-
Operationen für Kryptographie. Für eine Sicherheitsanalyse der neuen
Kryptosysteme sind weitere Untersuchungen notwendig.

Diese Dissertation umfasst drei thematische Gebiete:

• Wir studieren Halbgruppen-Operationen und ihre Anwendungen in
der Kryptographie, mit dem Ziel, die Voraussetzungen zu erfassen, die
für ein sicheres Kryptosystem nötig sind.

• Wir geben eine Einführung in die Halbring-Theorie und beweisen die
Klassifikation von endlichen einfachen Halbringen.

• Wir untersuchen die Anwendbarkeit der einfachen Halbringe für die
Konstruktion von kryptographischen Halbgruppen-Operationen.

Im ersten Kapitel werden Verschlüsselungs- und Signatur-Schemata
eingeführt, ihre Sicherheit wird rigoros definiert. Es werden weiterhin einige
dl-basierte Verfahren vorgestellt und ihre Sicherheitsannahmen spezifiziert.

Das zweite Kapitel behandelt Halbgruppen-Operationen im Hinblick
auf Kryptographie. Es werden Verallgemeinerungen der dl-basierten
Verfahren dargestellt und die Schwierigkeit der zugrundeliegenden sdl-
Probleme diskutiert. Wir zeigen schließlich, dass viele neuere Vorschläge
für Kryptosysteme im Kontext von Halbgruppen-Operationen eingebettet
werden können.

Das dritte Kapitel enthält eine Einführung in Halbringe und es wird
eine vollständige Klassifikation von endlichen einfachen Halbringen mit Null
gegeben. Das Resultat besagt, dass ein endlicher Halbring mit Null der
Ordnung > 2, der kein Ring ist, genau dann einfach ist, wenn er isomorph
zu einem “dichten” Unterhalbring eines Endomorphismen-Halbring eines
endlichen idempotenten kommutativen Monoids ist. Wir untersuchen diese
Halbringe anschließend bzgl. Isomorphie.

Im letzten Kapitel diskutieren wir die Anwendungen des Klassifikations-
resultats für Kryptographie: Wir präsentieren verschiende Ansätze, um
Halbgruppen-Operationen zu konstruieren, die auf einfachen Halbringen
basieren.
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Chapter 1

Cryptography

Cryptography, literally the science of secret writing, is about one of the old-
est desires of humankind: confidential communication. This discipline has a
long history which can be traced back to the Ancient Egyptians, but during
the last decades it has been transformed from an art to a science. Because
of the proliferation of computers and communications systems cryptography
is now used more than ever in everyday life.

Modern cryptography can be seen as the study of methods related to
different aspects of information security, concentrating mainly on three im-
portant goals:

• Secrecy. The information should not leak to any unauthorized party.

• Integrity. The information must be protected against data manipula-
tion.

• Authentication. The information should identify the author.

In special situations there may be further aspects of information security
to consider, like nonrepudiation, electronic payment, anonymity, electronic
votes, zero-knowledge proofs, etc.

This chapter deals with the basic notions of cryptography on which the
applied part of this thesis is based. Details can be found in common cryp-
tography textbooks, e.g. [Gol01, Gol04, KL08, MvOV97, Vau06].

In the first section of this chapter we define the syntax of general encryp-
tion and digital signature schemes. The following two sections discuss two
approaches to define security: First we present the classical or information
theoretic approach of Shannon, then we present the modern or complexity
theoretic approach to security, and we include a part on public-key cryp-
tosystems. In the fourth section two basic cryptographic primitives, namely
one-way functions and one-way trapdoor functions, will be defined. The
final section of this chapter deals with cryptosystems based on the discrete
logarithm problem.
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1.1 Cryptosystems

We define the components of encryption and signature schemes, focusing on
a “syntactical” framework. Security considerations are not yet included.

1.1.1 Encryption schemes

We start with the issue of secrecy in communication, which is the classical
goal of cryptography. Cryptographers widely appreciate and follow Kerck-
hoffs’ principle, which says that a cryptosystem should be secure even if its
complete structure is known. In other words, the security of the cryptosys-
tem must be based solely on the secrecy of keys.

We now give the definition of an encryption system. Let X generally be
a probability space. It will be used to model probabilistic encryption and
signing functions as well as key distributions.

Definition 1.1.1. Let M, C,K be finite or countable sets denoting the mes-
sage space, the cipher space, and the key space, respectively.

A (probabilistic) encryption scheme is specified as follows:

• For every e ∈ K there is a map Ee : M×X → C, called (probabilistic)
encryption function.

• For every d ∈ K there is a map Dd : C → M, called decryption
function.

• For every e ∈ K there is exactly one d ∈ K such thatDd(Ee(m,x)) = m
for all m ∈ M, x ∈ X . We refer to (e, d) as a key pair .

We write the encryption scheme as ({Ee}e∈K, {Dd}d∈K) or simply as
({Ee}, {Dd}).

We can view the encryption Ee(m) of a message m ∈ M as a C-valued
random variable. If the encryption functions Ee are in fact deterministic,
i.e. they do not depend on x ∈ X , we speak of a deterministic encryption
scheme. In this case, the encryption functions can be viewed as ordinary
functions Ee : M → C. These are injective, and for any key pair (e, d) we
have Dd ◦ Ee = idM. Probabilistic encryption schemes are used to achieve
stronger levels of security, as we will see later.

Definition 1.1.2. The encryption scheme is called symmetric if d = e for
every key pair (e, d).

The communication diagram of a symmetric encryption scheme is dis-
played in Figure 1.1.

Note that the sender and the receiver have to agree on a common se-
cret key prior to their secret communication. They need a secure channel
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key generator

K

e
��

confidential and

authenticated channel

e

��

m // encryption

Ee
____

adversary
zzv
v
v
v
v
v
v
v

c = Ee(m)
//______ decryption

De
// m

Figure 1.1: Symmetric encryption.

to exchange the key, i.e. a channel that provides both confidentiality and
authentication. This is not necessary in certain nonsymmetric encryption
schemes, namely public-key encryption schemes, see Section 1.3.3.

Cryptosystem 1.1.3. Let (A,+) be a group and suppose that M = C =
K = A. Then ({Ee}e∈A, {Dd}d∈A), given by Ee : A → A, m 7→ m + e, and
Dd : A→ A, c 7→ c− d, is a symmetric deterministic encryption scheme.

If (A,+) is the abelian group ((Zm)n,+) then this example describes
the so-called one-time pad . Note that the special case (A,+) = (Z26,+)
corresponds to Caesar’s cipher (of a single letter).

There are technical extensions of Definition 1.1.1 concerning the message
space, the cipher space, and the key space. They will be needed for some
examples, see e.g. Cryptosystem 1.5.18 below.

• There is a distinction between the encryption key space and the de-
cryption key space. These may be denoted KE and KD, respectively.

• The message space Me and the cipher space Ce depend (partially) on
the encryption key e. For example, the message length is restricted to
be equal to the key length.

1.1.2 Digital signatures

Next we define general digital signature schemes. They are used to achieve
the goal of authentication of information.

Definition 1.1.4. Let M,S,K be finite or countable sets denoting the
message space, signature space, and key space, respectively.

A (probabilistic) digital signature scheme is specified as follows:

• For every d ∈ K there is a map Sd : M × X → S, called signing
function.
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• For every e ∈ K there is a map Ve : M × S → {yes,no}, called
verification function.

• For every d ∈ K there is exactly one e ∈ K such that Ve(m,Sd(m,x)) =
yes for all m ∈ M, x ∈ X . We again refer to (e, d) as a key pair.

We write the digital signature scheme as ({Sd}d∈K, {Ve}e∈K) or simply as
({Sd}, {Ve}).

In practice, m ∈ M is often a short extract of a longer message, say the
value of a hash function (hash-and-sign method). As before, we can consider
the signature Sd(m) of a message m as an S-valued random variable.

Definition 1.1.5. The digital signature scheme is symmetric if d = e for
every key pair (e, d).

The communication diagram of a symmetric digital signature scheme is
displayed in Figure 1.2.

key generator

K

e
��

authenticated and

confidential channel

e

��

m // signing

Se
___

adversary
~~|
|
|
|
|
|
s = Se(m)

//______ verification

Ve
// yes/no

Figure 1.2: Message authentication.

As in the case of symmetric encryption schemes, the communicating
parties have to agree on a common secret key in advance. Hence, only the
legitimate receiver will be able to verify the signature. Symmetric digital
signature schemes are also called message authentication schemes.

To complete the specification of encryption and digital signature
schemes, it is necessary to say how the key pairs are generated. Recall
that X denotes a probability space.

Definition 1.1.6. A key generator for an encryption scheme or a digital
signature scheme with key space K is given by a map K : X → K×K such
that any (e, d) in the image is a key pair.

From now on an encryption scheme or a digital signature scheme is called
a cryptosystem .
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1.2 Perfect security: Shannon’s theory of secrecy

In this section we present the “classical” or information theoretic approach
to the security of encryption schemes as developed by Shannon [Sha49].
Although the concept is of little practical relevance, it is conceptually easy
and it leads to the notions of computational security devloped in the next
section.

Note that in Section 1.1 we gave only a syntactical definition for cryp-
tosystems, so that also trivial1 (i.e. insecure) cryptosystems are included.
For the security evaluation of a cryptosystem we have to determine the se-
curity goal and the attack model. The security goal describes which type
of breaks have to be prevented. The attack model defines the abilities of an
adversary.

In this classical approach we examine only passive attacks, i.e. the adver-
sary only intercepts ciphertexts, but has no access to messages together with
their encryptions. Other types of attacks will be discussed in Section 1.3.4.

1.2.1 Perfect security

Let ({Ee}e∈K, {Dd}d∈K) be an encryption scheme that is symmetric2, and
let K : X → K be a key generator. We now state a very high security goal.

Definition 1.2.1. The encryption scheme is perfectly secure if every M-
valued random variable X (denoting a message) that is independent of the
key K (and of all probabilistic encryptions Ee(m)) is also independent of
the random variable Y = EK(X) (denoting its encryption).

The independence of X and Y is equivalent to the condition

P (X = x) = P (X = x|Y = y) for all x ∈ M, y ∈ C ,

which says that the ciphertext Y reveals no further information about the
distribution of the plaintext X. It can be shown that perfect security implies
|K| ≥ |M|, i.e. the key space has to be at least as large as the message space.

Example 1.2.2. The one-time pad, Cryptosystem 1.1.3, is a perfectly se-
cure encryption scheme, provided the key is uniformly distributed over the
key space. Of course, for each message to be encrypted one has to choose a
new key to maintain the security.

1For example, consider an encryption scheme ({Ee}, {Dd}) with Ee = idM for all
e ∈ K.

2Since in a general encryption scheme the decryption key d = d(e) is a function of
e, we may assume in the information theoretic approach presented here that the encryp-
tion scheme is symmetric. This will be different in the complexity theoretic approach of
Section 1.3, where nonsymmetric cryptosystems with not efficiently computable functions
d(e) are of importance.
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1.2.2 Indistinguishability

We give another notion of security, which says that it is impossible to dis-
tinguish the encryptions of any two plaintexts.

Definition 1.2.3. The encryption scheme is secure in terms of indistin-
guishability if for every pair of messages m0,m1 ∈ M the random variables
EK(m0) and EK(m1) denoting their encryptions are identically distributed.

It can be shown that security in terms of indistinguishability is equiv-
alent to perfect secrecy. Furthermore, this definition is equivalent to the
formulation given below, which will be modified in Section 1.3. Every ad-
versary A has a chance of exactly 1

2 to win the following game against a
challenger C:

(1) A chooses two messages m0,m1 ∈ M and sends them to C;

(2) C chooses a bit b ∈ {0, 1} uniformly at random, an encryption key e
according to the distribution of K, and sends the encryption c = Ee(mb)
to A;

(3) A wins if it guesses correctly whether b = 0 or b = 1.

Since we assume that the adversary has unlimited computational re-
sources one speaks of unconditional security . Later we will restrict the
definition to adversarial algorithms that are efficient.

1.3 Computational security

Perfectly secure cryptosystems like the one-time pad are not very practical
for two reasons. Firstly, a key as long as the longest possible message has
to be generated and it has to be “truly random”. Secondly, the key has to
be communicated between the parties in a secure way.

However, in practice perfect security is not needed, since actual adver-
saries do not have unlimited computational resources. This leads to the
notion of computational security : The legitimate parties should be able to
perform their tasks (e.g. encryption, decryption) efficiently, but the compu-
tational problem for malicious parties to abuse the system should be infea-
sible.

This concept was already mentioned by Shannon [Sha49, Part III] as
“practical security”, but was fully established only decades later after the
development of computational complexity theory and public-key cryptogra-
phy in the 70s and probabilistic algorithms and cryptosystems in the 80s.
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1.3.1 Principles of complexity theory

Complexity theory investigates the hardness of computational problems. We
state briefly some important principles of complexity theory, since they are
of significant influence on theoretical cryptography and thus also on this
thesis. For more details we refer to textbooks on complexity theory, e.g.
[AB09, Gol08, Pap94].

Problems and problem instances. The term problem refers to a general de-
scription of a computational task, and the term instance of a problem means
a particular case of the task. The problem can be, for example, to factorize
integers and an instance can be the problem to factorize the number 8051.
Complexity theory is concerned with the difficulty of a problem rather than
of a particular instance.

In cryptography one encounters two basic types of problems:

• Compute a function, e.g. for encryption and decryption, or produce a
random element of a given distribution, e.g. for key generation.

• “Break” a cryptosystem; for encryption schemes this means to gain
(partial) information about the message out of its encryption (see Sec-
tion 1.3.4 for details).

Algorithms and computational models. Computational models, like Turing
machines and Boolean circuits, make the notion of algorithm precise. There
are different models, e.g. for deterministic, nondeterministic, probabilistic
and quantum computing algorithms. Deterministic and probabilistic algo-
rithms are usually seen as the practical realizable ones.

Our primary computational model for algorithms will be that of a prob-
abilistic Turing machine.

Asymptotic approach. The amount of resources (like time and space) needed
by an algorithm is given as a function f(k) in the input length k. Mostly
we will concentrate on running time, i.e. the number of steps performed
during execution. Since it is possible to improve every algorithm by a con-
stant speed-up factor, constants are neglected in the analysis. Hence, one is
interested in the asymptotic behaviour of the function f .

An algorithm will be considered efficient if its running time is bounded
by a polynomial. Defining the class of efficient algorithms this way has the
primary advantage that this class is closed under composition: An efficient
algorithm with oracle access to another efficient algorithm (which can be
viewed as a subroutine) is equivalent to an efficient algorithm without oracle
access.

Algorithms solving problems. For a full specification of a computational
problem it is necessary to state which algorithms are considered as solving
the problem. There are two different approaches:
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• An algorithm “solves” the problem only if it computes the solution
correctly for every instance. This is the classical approach in complex-
ity theory and corresponds to a worst-case analysis. This approach
applies to the legitimate parties.

• An algorithm is considered to “solve” the problem already if it com-
putes the solution correctly with some nonnegligible probability for a
random instance. This approach applies to adversaries.

Conditional results and reductions. As indicated by the fact that the famous
P 6= NP conjecture3 is still unproven, it is very hard to give lower bounds
for the inherent complexity of a problem. Rather than making absolute
statements, one compares instead the difficulty of different problems via the
notion of reduction. In this sense it is possible to expose the most difficult
problems in the class NP, namely the NP-complete problems.

We point out that the asymptotic approach of complexity theory limits
its direct applicability to analyze the security of concrete cryptosystems with
a specified security parameter: Fixing the security parameter means that
only instances of a particular input length are considered. Concepts from
complexity theory are nonetheless indispensable to establish the foundations
of cryptography, and they lead to new protocols. Furthermore, it is usually
relatively easy to translate a guarantee of asymptotic security into a concrete
security guarantee.

1.3.2 Efficient algorithms and cryptosystems

As indicated, our notion of efficient algorithms (as those that can be practi-
cally performed by both the legitimate parties and the adversaries) will be
that of probabilistic polynomial-time algorithms.

A probabilistic algorithm A can be modeled as a Turing machine that
for every state has two subsequent states and at every step it tosses a fair
coin to decide which successive state it should enter. The output A(x) of
the algorithm on input x can thus be seen as a random variable which is
distributed according to the internal coin tosses of the algorithm.

The computational model of a probabilistic algorithm can be seen as
the most powerful which is still practical. In fact, the strong Church-Turing
thesis states that any “reasonable” model of computation can be efficiently
simulated on a probabilistic Turing machine.

Definition 1.3.1. An algorithm is called efficient if it is probabilistic and
runs in polynomial time in its input length.

3The class P denotes all decision problems that can be solved in deterministic polyno-
mial time. It is contained in the presumably larger class NP, which can be defined as all
decision problems solvable in nondeterministic polynomial time.
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Remark 1.3.2. There are other notions for “efficient algorithms” in the
literature. One of these notions is based on circuit complexity (see e.g.
[Pap94, Section 11.4]): An algorithm is given by a family of Boolean cir-
cuits C = (Ck)k∈N, one circuit Ck for each input length k. The circuit family
C is called polynomially bounded if the number of gates in Ck is bounded by a
polynomial in k. It can be shown that every problem solvable by an efficient
algorithm (as in the definition above) can also be solved by a polynomially
bounded family of circuits.

Let {0, 1}∗ be the set of all bitstrings of finite length. We denote by |x|
the length of a bitstring x ∈ {0, 1}∗. A function f : D×X → {0, 1}∗, where
D ⊆ {0, 1}∗ and X is a probability space, is computed by the algorithm A,
if the random variables f(x) and A(x) are identically distributed, for every
x ∈ D.

From now on we will tacitly assume that every cryptosystem is efficient .
This means that for every encryption scheme ({Ee}e∈K, {Dd}d∈K) the mes-
sage space M, the cipher space C, and the key space K are subsets of {0, 1}∗,
and all encryption functions Ee : M×X → C and all decryption functions
Dd : C → M are efficiently computable4. Similar conventions apply to
signature schemes.

Because of the asymptotic approach of complexity theory we introduce
a security parameter k, which is involved into the key generator.

Definition 1.3.3. A (scalable) key generator for a cryptosystem with
key space K is given by an efficiently computable map

K : {1k | k ∈ N} × X → K×K

such that any (e, d) in the image is a key pair.

Here, 1k denotes a string of 1s with length k. We note that K(1k) can
be seen as a “key pair valued” random variable.

1.3.3 Public-key cryptography

The concept of computational security makes public-key cryptosystems pos-
sible, which are certain nonsymmetric cryptosystems. Here we give a slightly
informal definition of a public-key encryption scheme. The precise definition
is linked with the security definition given later.

Definition 1.3.4. An encryption scheme ({Ee}, {Dd}) is called a public-
key encryption scheme , if for a given encryption key e ∈ K and a given
ciphertext c ∈ C in the image of Ee it is “infeasible” to find the corresponding
message m ∈ M, i.e. m such that Ee(m,x) = c holds for some x ∈ X .

4Since the decryption functions are deterministic one may even assume that the de-
cryption functions are computable by a deterministic polynomial-time algorithm.
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Thus in a public-key encryption scheme the decryption of messages
should be infeasible even if the encryption key is known (“public”). In
particular, for a given e we cannot find a d such that (e, d) is a key pair,
because otherwise we would find m as Dd(c). The communication diagram
of a public-key encryption scheme is depicted in Figure 1.3.
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Figure 1.3: Public-key encryption.

Public-key encryption schemes are applied in the following way: Every
party A has to generate and maintain only one key pair (eA, dA) for confi-
dential communication with any of the other parties. A announces eA and
keeps dA secret, so that eA and dA are referred to as A’s public and pri-
vate key, respectively. Now everyone can encrypt a message m for A as
c = EeA

(m). A uses its private key dA to decrypt c as DdA
(c) = m.

Hence, there is no need to exchange a key in a secure way prior to the
communication. However, the public encryption keys must be authenticated,
otherwise an impersonation attack is possible.

Definition 1.3.5. A digital signature scheme ({Sd}, {Ve}) is called a
public-key digital signature scheme if for a given verification key e ∈ K
and a given message m ∈ M it is “infeasible” to forge a valid signature, i.e.
s ∈ S such that Ve(m, s) = yes.

For a given e in a public-key digital signature scheme we cannot find
d such that (e, d) is a key pair, because otherwise s = Sd(m) would be a
valid signature for m. The communication diagram of a public-key digital
signature scheme is depicted in Figure 1.4.

The use of public-key digital signature schemes in public-key cryptog-
raphy is the following: Every party A generates a key pair (eA, dA) and
announces eA. Then, A’s signature s = SdA

(m) of a message m can be
verified by everyone using VeA

(m, s).
Finally, there exist key agreement protocols, which use techniques from

public-key cryptography, to establish a common key between two or more
parties communicating over non-tap-proof channels. We do not give the
formal definition here, since it is slightly involved, see e.g. [BWJM97]. An
example of key agreement protocol will be given in Section 1.5.
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Figure 1.4: Digital signature.

1.3.4 Notions of security

Understanding the principles of security is extremely important for the de-
sign of new cryptosystems. We give definitions of the most important se-
curity notions for cryptosystems: what are the types of adversaries, what
is considered a successful attack? We try to provide an overview of a huge
area, still being a field of current research. For more detailed information
the interested reader is referred to Goldreich’s book [Gol04].

Security of encryption schemes

We recall that for a security definition of a cryptosystem one has to specify
the abilities of malicious parties and what is considered a success of an
attack. In other words one has to determine the attack model and the
security goal.

There are different types of attack against encryption schemes. Weak
adversaries can only perform a passive attack as in the classical approach of
Section 1.2.

• Ciphertext only attack : Some ciphertexts are intercepted.

Adversaries with more capabilities will have access to messages together
with their encryptions under the key being attacked. The following list
states the most common types of attack, ordered by increasing strength.

• Known plaintext attack : Some messages with their encryptions can be
received, without having control over the choice of messages.

• Chosen plaintext attack : The adversary may obtain encryptions of
plaintexts of its choice, i.e. has access to an encryption oracle.

• Chosen ciphertext attack : The adversary can also obtain decryptions
of ciphertexts of its choice, i.e. has access to both an encryption and
a decryption oracle.
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In the complexity theoretic approach presented here (and in contrast
to Section 1.2) the adversaries are assumed to be efficient, i.e. they are
probabilistic polynomial-time algorithms and may perform only polynomi-
ally many oracle-calls, so they can obtain only polynomially many plain-
text/ciphertext pairs.

Now we define the security goal for encryption schemes. In computa-
tional security models the advantage of an attacker should often be “negli-
gible” instead of 0, this is:

Definition 1.3.6. A function ε : N → R is called negligible , if for all c ∈ N

there exists an N ∈ N such that for all n ≥ N we have

|ε(n)| ≤ 1

nc
.

More generally, a function ν : I → R, where I ⊆ {0, 1}∗ is an infinite set, is
called negligible in |i|, if there exists a negligible function ε : N → R such
that ν(i) ≤ ε(|i|) for all i ∈ I.

Thus a negligible function tends faster to 0 than any inverse of a poly-
nomial function. We are now able to give the definition of polynomial indis-
tinguishability.

Definition 1.3.7. Let ({Ee}, {Dd}) be a public-key encryption scheme with
a scalable key generator K. The encryption scheme is called secure (in
terms of polynomial indistinguishability) if an efficient adversary A
has a chance of only 1

2 + ε(k) to win the game below against a challenger C,
where ε is a negligible function.

(1) C chooses an encryption key e according to the distribution of K(1k)
and sends it to A;

(2) A chooses two messages m0,m1 ∈ M and sends them to C;

(3) C chooses a bit b ∈ {0, 1} uniformly at random, and sends the ciphertext
c = Ee(mb) of the message mb to A;

(4) A wins if it guesses correctly whether b = 0 or b = 1.

Note two differences between the game of the definition above and the
game stated after Definition 1.2.3. Firstly, the adversary has to be efficient.
In fact, no public-key encryption scheme would satisfy this security defini-
tion if computationally unbounded adversaries were allowed. Secondly, the
adversary also knows the encryption key. In particular it can encrypts arbi-
trary messages by itself and hence can perform at least a chosen plaintext
attack.

Secure public-key encryption schemes require probabilistic encryption
functions. For, if the encryption functions are deterministic, the adversary
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can use e to encrypt m0 and m1 and compare the result with the given
cipher c.

If the adversary has also decryption abilities, one distinguishes two cases.
Namely, if the oracle access to the decryption oracle is granted only before
having received the challenge ciphertext, then one speaks of a non-adaptive
chosen ciphertext attack. If the oracle access is granted even after hav-
ing received the challenge ciphertext (in this case it is not allowed to use
the decryption oracle for the target ciphertext), then the attack is called
adaptive.

Security notions for symmetric encryption schemes are defined similarly,
with the difference that the adversary is not given the encryption key e. In
this case one has to distinguish between ciphertext only, known plaintext,
and chosen plaintext attacks.

Remark 1.3.8. Another concept is that of semantic security, which extends
Shannon’s notion of perfect security for efficient adversaries. Speaking infor-
mally, an encryption scheme is semantically secure if whatever an adversary
can compute efficiently about the plaintext given the ciphertext, the adver-
sary can also compute efficiently without the ciphertext.

It can be shown that semantic security is equivalent to polynomial in-
distinguishability.

Remark 1.3.9. Another security notion, which is related to the issue of infor-
mation integrity, is that of malleability. An encryption scheme is malleable if
it is possible for an efficient adversary to transform a ciphertext into another
ciphertext which decrypts to a related plaintext. That is, given an encryp-
tion of a plaintext m, it is possible to generate another ciphertext which
decrypts to f(m), for a known arbitrary function f , without necessarily
knowing or learning m.

The main result here is that under adaptive chosen ciphertext attack,
security in terms of polynomial indistinguishability is equivalent to non-
malleability.

Security of digital signature schemes

For defining security of a digital signature scheme, one often assumes that
the adversary can perform a chosen message attack , i.e. access is granted to
a signing oracle. This attack can again be non-adaptive or adaptive.

We now define a strong notion of security for digital signature schemes.

Definition 1.3.10. Let ({Sd}, {Ve}) be a public-key digital signature
scheme with a scalable key generator K. The signature scheme is exis-
tentially unforgeable if any efficient adversary A fails to create a valid
signature for any message not signed before.



14 1. Cryptography

Precisely, if (d, e) ∼ K(1k) is a key pair distributed according to the key
generator, the probability pA(k) that A with input (1k, e) outputs a pair
(m, s) ∈ M× S with the following properties is a negligible function:

• the signature s is valid for m, i.e. Ve(m, s) = yes,

• the message m is one for which A has not requested a signature during
the attack.

Existentially unforgeable symmetric digital signature schemes (i.e. mes-
sage authentication schemes) are defined similarly, with the difference that
the adversary is not given the verification key e.

Finally, we mention two adversarial goals stronger than existential
forgery (leading to weaker notions of security), which are also sometimes
considered in the literature.

• Selective forgery : The adversary can choose some messages for which
it can create a valid signature.

• Universal forgery : The adversary can create a valid signature for any
message.

1.4 One-way functions and trapdoor functions

Now that we have defined different notions of practical security for en-
cryption schemes and for digital signature schemes, the natural question
is whether cryptosystems which satisfy certain security requirements exist
and how to construct such schemes. A common approach is to study more
elementary objects, whose existence can be proven, or for which at least
some promising candidates are known, and then to construct cryptosystems
out of them. These fundamental tools which form the basic ingredients of a
cryptosystem are often called primitives.

One-way functions

One-way functions belong to the most important cryptographic primitives.
Informally speaking, these functions are efficiently computable but compu-
tationally hard to invert. Their importance for cryptography was stressed
by Diffie and Hellman in their seminal paper [DH76], although a rigorous
treatment was not given until later.

Recall that an algorithm is called efficient if it is probabilistic and runs
in polynomial time.

Definition 1.4.1. A map f : {0, 1}∗ → {0, 1}∗ is called one-way function
if

• there is an efficient algorithm which computes f(x) for a given x,
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• any efficient algorithm A fails to invert the function f .

Precisely, if x is a uniformly distributed random variable over {0, 1}k,
the probability pA(k) that A with input (1k, f(x)) outputs z with
f(z) = f(x) is a negligible function in k.

It is not known whether one-way functions exist, but their existence is
conjectured by many authors, and some candidates are given in the exam-
ples below. In fact, the existence of one-way functions would imply P 6= NP,
which is perhaps the most well-known open conjecture in theoretical com-
puter science. Conversely, it is not proven that P 6= NP implies the existence
of one-way functions, mainly because of the distinction between worst-case
hardness and average-case hardness.5

One-way functions have multiple cryptographic applications. We remark
that the existence would imply (and is in fact equivalent to each of) the exis-
tence of secure pseudo-random number generators, secure public-key digital
signature schemes, and weakly collision-resistant families of hash functions.
Details can be found in [Gol01].

Example 1.4.2. The multiplication map N × N → N, (m,n) 7→ m · n,
restricted to m,n of same binary length, is widely believed to be a one-way
function (we use a standard encoding of natural numbers as bitstrings to
obtain a map {0, 1}∗ → {0, 1}∗). The inversion of this function depends on
the integer factorization problem, which is a computationally hard problem
from experience.

Collections of functions

For convenience reasons we generalize the definition of one-way function to
a collection of functions with finite domains. This is useful for the definition
of one-way trapdoor functions and simplifies giving examples.

Recall that |i| denotes the length of a bitstring i ∈ {0, 1}∗.
5In fact, P 6= NP is equivalent to FP 6= FNP, the complexity theory statement in terms

of relations (see e.g. [Pap94, Section 10.3]). The latter statement means exactly that there
exists a relation R ⊆ {0, 1}∗ × {0, 1}∗ with the following properties:

• R is balanced, i.e. for any (u, v) ∈ R the length of v is polynomially bounded in
the length of u,

• R is polynomial-time checkable (R ∈ FNP), i.e. for given (u, v) it can be decided
in polynomial time whether (u, v) ∈ R,

• R is not polynomial-time computable (R 6∈ FP), i.e. no polynomial-time algorithm
can compute for all u ∈ {0, 1}∗ an element v ∈ {0, 1}∗ with (u, v) ∈ R.

It is easy to see that for a one-way function f the inverse relation f−1 satisfies these prop-
erties. The third condition means that every (deterministic) polynomial-time algorithm
fails to compute the relation for at least one argument u, but for a one-way function we
need that even every probabilistic polynomial-time algorithm fails to compute the rela-
tion for almost every argument u. The existence of one-way functions is thus a stronger
hardness assumption than P 6= NP.
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Definition 1.4.3. Let {fi} be a collection of maps fi : {0, 1}|i| → {0, 1}∗,
indexed by i ∈ {0, 1}∗. Then, {fi} is called one-way collection of func-
tions if

• there is an efficient algorithm which computes fi(x) on input (i, x),

• any efficient algorithm A′ fails to invert the functions fi.

Precisely, if i and x are uniformly distributed random variables over
{0, 1}k, the probability pA′(k) that A′ with input (i, fi(x)) outputs z
with fi(x) = fi(z) is a negligible function in k.

It is easy to see that if f is a one-way function, then {fi} defined by
fi(x) = (i, f(x)) is a one-way collection. Conversely, if {fi} is a one-way
collection then a function f with f(i, x) = (i, fi(x)) is one-way.

Example 1.4.4 (Exponentiation modulo p). Let I be the set of all pairs
(p, g), where p is a prime and g is a generator of the cyclic group Z

∗
p, and

consider the collection of bijective functions

f(p,g) : Zp−1 → Z
∗
p, a 7→ ga

with (p, g) ∈ I. The problem of inverting these functions is called the
discrete logarithm (dl) problem, and it is widely believed to be hard. Thus
the collection {f(p,g)} is a candidate for a one-way collection.6

This example can be generalized to other groups in which the discrete
logarithm problem is believed to be hard. Section 1.5 will deal with dl-based
cryptosystems.

One-way trapdoor functions

For some cryptographic purposes special one-way functions are important,
namely those with a supplementary information which enables efficient in-
version.

Definition 1.4.5. A collection of one-way functions {fi} is called a col-
lection of one-way trapdoor functions if there exists a binary relation
T ⊆ {0, 1}∗ × {0, 1}∗ with the following properties:

• There is an efficient algorithm which for input 1k outputs a pair
(i, t) ∈ T where i is uniformly distributed over {0, 1}k.

• There is an efficient algorithm which for every input ((i, t), fi(x)) with
(i, t) ∈ T and x ∈ {0, 1}|i| outputs z with fi(x) = fi(z).

6The given description is not complete, since we do not state the encoding maps.
For the construction of a map from {0, 1}∗ to I we remark that there exists an efficient
algorithm which generates primes p, together with the prime factorization of p− 1, which
can be used to generate g. The encoding maps from Zp−1 or Z

∗
p to {0, 1}k are straight-

forward.
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We view the element t as a trapdoor , which allows for efficient compu-
tation of preimages of fi. Note that there is no efficient algorithm which
finds a trapdoor t on input the index i: Otherwise, one could construct an
efficient algorithm which on input (i, fi(x)) computes a preimage of fi(x),
contradicting the assumption that {fi} is a collection of one-way functions.
Despite this fact, the first property states that elements in T can be easily
generated.

One-way trapdoor functions are closely related to public-key encryption
schemes, see Definition 1.3.4. In fact, the encryption maps Ee of a determin-
istic public-key encryption scheme may serve as one-way trapdoor functions
with the trapdoor information being the decryption key d.

We close with two examples of candidates for one-way trapdoor func-
tions, without giving any encoding details.

Example 1.4.6 (RSA function). Let I consist of all pairs (n, e), where
n = p q is a number composed of different primes p, q in the order of

√
n, i.e.

having 1
2 log2 n bits, and e < n is a coprime number to ϕ(n) = (p− 1)(q − 1).

The bijective functions

f(n,e) : Zn → Zn, m 7→ me

form a candidate for a collection of one-way trapdoor functions. For each
(n, e) ∈ I the trapdoor t is the inverse d of e modulo ϕ(n), which can be
computed if the factorization of n is known. Once d is known, the inverse
map of f(n,e) can be efficiently computed, since it is given by

f−1
(n,e) : Zn → Zn, c 7→ cd.

However, it is not known whether the inversion problem of the function f(n,e)

is equivalent to the factoring problem of n.

Example 1.4.7 (Rabin function). For n being a composite number as in
the example before consider the squaring maps

fn : Zn → Zn, m 7→ m2.

These form also a candidate for a collection of one-way trapdoor functions,
in fact, it can be shown that the problem of inverting these maps is equiv-
alent to the problem of factoring n. The trapdoor information is thus the
factorization of n. Unfortunately, this map is not injective, because it is
4 : 1 on Z

∗
n.

1.5 Discrete logarithm based cyptosystems

Many cryptosystems, including the Diffie-Hellman key agreement protocol
and the ElGamal encryption and signature schemes, employ the intractabil-
ity of the discrete logarithm problem. In this section we first introduce the
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discrete logarithm problem and the related Diffie-Hellman problem, then we
present some discrete logarithm based cryptosystems.

1.5.1 Function problems

Since the discrete logarithm problem is a computational function (or search)
problem, we start with a short formal introduction of this concept, following
[Gol08].

Definition 1.5.1. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. For
x ∈ {0, 1}∗ let R(x) := {y ∈ {0, 1}∗ | (x, y) ∈ R}.

The function problem or search problem for R is the algorithmic
problem to compute on input x ∈ {0, 1}∗ an element y ∈ R(x). We call y
a solution to the problem instance x. We speak simply of the “function
problem R” instead of the “function problem for the relation R”.

The domain D(R) of a function problem R is the set of all problem
instances with a solution, D(R) := {x ∈ {0, 1}∗ | R(x) 6= ∅}. The function
problem is polynomially bounded if there exists a polynomial p such that for
every y ∈ R(x) we have |y| ≤ p(|x|).

Polynomially bounded function problems guarantee that the length of a
solution is not too long compared with the length of the problem instance.

Definition 1.5.2. Let A be a deterministic algorithm which halts on every
input. Then A is said to solve the function problem R, if for all inputs
x ∈ D(R) A outputs a solution, i.e. A(x) ∈ R(x), and for all inputs x 6∈ D(R)
A outputs a special symbol ⊥, indicating that x has no solution.

Now we state a class of function problems which are easy to solve.

Definition 1.5.3. A polynomially bounded function problem is said to be
in the class FP, if there exists a polynomial time algorithm A solving the
problem.

To employ the hardness of a function problem for cryptography it is not
enough that the problem is outside of FP. Rather we need the intractability
of the problem in the average case, as defined below.

Definition 1.5.4. Let R be a polynomially bounded function problem and
let (µk)k be a sequence of probability distributions on the set {0, 1}∗ of
problem instances. The problem R is called intractable if for every efficient
algorithm A the success probability averaged over the instance distribution
µk,

pA(k) :=
∑

x∈{0,1}∗

P(A(x) ∈ R(x))µk(x) ,

is a negligible function in k.
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Example 1.5.5. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function, let R be
the inverse relation f−1, and for every k let µk be the distribution of f(Uk),
where Uk is a uniformly distributed {0, 1}k-valued random variable. Then
the inversion problem R is intractable.

1.5.2 The discrete logarithm problem

Now we introduce the discrete logarithm problem in general cyclic groups,
following the presentations in [Bon98] and [CS03]. The following definition
specifies the computational requirements for such groups. Due to the asymp-
totic approach of complexity theory we have to consider group families.

Definition 1.5.6. A group family G is a set of finite cyclic groups
G = {Gi}, where i ranges over an infinite index set I ⊆ {0, 1}∗. We as-
sume that:

• Gi ⊆ {0, 1}∗ and there are polynomial time (in |i|) algorithms com-
puting the multiplication maps Gi ×Gi → Gi and the inversion maps
Gi → Gi;

• the group sizes ni = |Gi| can be efficiently computed.

An instance generator IG for G is an efficient algorithm that for given
1k outputs some random index i and a generator g of Gi. The pair (i, g) is
called a group instance .

Remark 1.5.7. If the group has efficiently computable operations, then also
the powers ga of a group element α can be computed efficiently using a
square-and-multiply method (see e.g. [MvOV97, Algorithm 2.143]).

Example 1.5.8. The family {Z∗
p}p of multiplicative groups of prime fields

Zp can be seen as a group family. For this we have to specify an encoding of
the elements of Z

∗
p as bitstrings in {0, 1}∗. The natural way to do this is to

identify the quotient ring Zp = Z/pZ with the set {0, 1, . . . , p− 1} of repre-
sentatives, and to encode these integers into their binary representations.7

The instance generator is used to select a member of G of the appropriate
size. For example, on input 1k the instance generator may generate a random
k-bit prime p such that p−1

2 is also prime.

Other groups than Z
∗
p that are of interest in cryptography are e.g. the

multiplicative group F
∗
q of a general finite field Fq and the group of points

on an elliptic curve defined over a finite field. In these examples there exists
always “natural” encoding of group elements as bitstrings, which we do not
state explicitly.

From now on we will identify Zn = Z/nZ as a set with {0, 1, . . . , n− 1}.
7The actual encoding of the group elements as bitstrings is not important as long as the

transition maps between different encodings are efficiently computable in both directions.
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Definition 1.5.9. Let G = {Gi} be a group family. The discrete loga-
rithm (dl) problem in G is the following problem:

Given a triple (i, g, h), where i ∈ I, g is a generator of the group Gi of
order ni, and h ∈ Gi, find an element a ∈ Zni

such that h = ga.

The dl problem appears to be a computationally hard problem in gen-
eral. The (bijective) exponentiation maps

fi : Zni
→ Gi, a 7→ ga

form thus a candidate for a collection of one-way functions, see Example
1.4.4. We pin down the hardness assumption of the dl problem in the next
definition.

Definition 1.5.10. Let G = {Gi} be a group family with instance genera-
tor IG. Furthermore, let µk be the probability distribution on dl instances
(i, g, ga) such that (i, g) is distributed as IG(1k) and a is uniformly dis-
tributed on Zni

, where ni = |Gi|.
Then the group family satisfies the DL assumption if the dl problem

is intractable with respect to (µk)k.

Recall from Definition 1.5.4 that intractability means that every efficient
algorithm attempting to solve the dl problem has only negligible success
probability on average.

The known algorithms to solve the dl problem fall into two classes (see
e.g. [MvOV97, Section 3.6] for more details):

• Generic or black-box algorithms work in arbitrary groups, i.e. they
only perform group operations and computations that do not involve
the encoding of group elements. However, some of these algorithms
perform well only in groups of certain orders.

It has been shown that any generic algorithm to solve the dl problem
in a group of prime order p needs at least Ω(p1/2) group operations
[Sho97].

This bound is achieved by both the baby-step-giant-step algorithm and
Pollard’s rho algorithm. If the group order is however smooth, so that
it has only small prime factors, then the Pohlig-Hellman algorithm
works faster (see the following remark).

• Other algorithms are efficient only in certain groups, i.e. they use prop-
erties of the encoding map of group elements as bitstrings. Examples
are index-calculus algorithms.

The fastest index-calculus methods for the dl problem in prime fields
or in fields of characteristic 2 run in subexponential time, namely
O(exp(c (log n)1/3(log log n)2/3)), where n is the group size and c > 0
is some constant.
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Remark 1.5.11. The main idea of the Pohlig-Hellman algorithm can be de-
scribed algebraically as follows. Let G be a cyclic group of order n, so that
G is naturally a Zn-module. Suppose n is composite, say n = km. Then
the module G is not simple, i.e. there exists a nontrivial epimorphism onto
some smaller Zn-module. Indeed, θ : G → G, h 7→ hk is an endomorphism
of Zn-modules whose image is a subgroup H ≤ G of order m.

Now let g be a generator of G and let (g, h) be an instance of a dl

problem, where h = ga. Then hk = (ga)k = (gk)a and hence solving the dl

problem (θ(g), θ(h)) = (gk, hk) in the subgroup H determines the discrete
logarithm a modulo m.

If the subgroup H is much smaller than the original group G the dl

problem is easier to solve in H. Now if n is a smooth number, the solution
a to the original dl problem can be constructed in this way from several
discrete logarithm computations in small subgroups of G.

This explains why simple modules G (which are groups of prime or-
der) have the hardest dl problem and are thus desirable for cryptographic
purposes. Furthermore, this Pohlig-Hellman type reduction argument gives
motivation for the study of simple structures like (congruence-)simple semi-
rings in Chapter 3 and 4 of this thesis.

1.5.3 The Diffie-Hellman key agreement protocol

The first discrete logarithm based cryptosytem we present establishes a com-
mon key between two parties, A and B, communicating over an insecure but
authenticated channel, see [DH76].

Cryptosystem 1.5.12. The Diffie-Hellman key agreement protocol is
the following: Let G be group family8 with instance generator IG.

• During setup phase a group instance (i, g) is selected and published
by applying IG(1k), where k is the security parameter. Let n be the
order of the cyclic group Gi with generator g.

• A chooses a random element a ∈ Zn and sends hA = ga ∈ Gi to B,
retaining a secretly.

• B chooses a random element b ∈ Zn and sends hB = gb ∈ Gi to A,
retaining b secretly.

• A computes ha
B = gba and B computes hb

A = gab. Their common key
is e = gab = gba ∈ Gi.

The security analysis for this protocol suggests to consider the following
problem, which is related to the dl problem.

8Originally, Diffie and Hellman used the multiplicative groups Z
∗
p of prime fields Zp as

the group family.
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Definition 1.5.13. Let G = {Gi} be a group family. The computational
Diffie-Hellman (cdh) problem in G is the following problem:

Given (i, g, hA, hB), where i ∈ I, g is a generator of the group Gi of
order ni, and hA = ga and hB = gb for some a, b ∈ Zni

, find the element gab.

Let us define group families with difficult cdh problem.

Definition 1.5.14. Let G = {Gi} be a group family with instance generator
IG. Furthermore, let µk be the probability distribution on cdh instances
(i, g, ga, gb) such that (i, g) is distributed as IG(1k) and a, b are uniformly
distributed on Zni

, where ni = |Gi|.
Then the group family satisfies the CDH assumption if the cdh prob-

lem is intractable with respect to (µk)k.

There is another, stronger assumption which is very useful for proving
security properties of cryptographic protocols. This assumption is the in-
tractability of the decision version of the Diffie-Hellman problem.

Definition 1.5.15. Let G = {Gi} be a group family. The decision Diffie-
Hellman (ddh) problem in G is the following problem:

Given (i, g, hA, hB, hC), where i ∈ I, g is a generator of the group Gi of
order ni, and hA = ga, hB = gb and hC = gc for some a, b, c ∈ Zni

, decide
whether c = a b holds.

Loosely speaking, the ddh assumption states that no efficient algorithm
can distinguish between the two distributions (ga, gb, gab) and (ga, gb, gc),
where a, b, c are chosen at random.

Definition 1.5.16. Let G = {Gi} be a group family with instance generator
IG. Let µk be the probability distribution on instances (i, g, ga, gb, gc), where
(i, g) is distributed as IG(1k) and a, b, c are uniformly distributed on Zni

,
where ni = |Gi|.

The group family satisfies the DDH assumption if every efficient algo-
rithm D has negligible advantage

∆D(k) := Pµk
(D(i, g, ga, gb, gab) = 1) − Pµk

(D(i, g, ga, gb, gc) = 1).

It is easy to see that a dl solver with noticeable success can be efficiently
transformed into a cdh solver with noticeable success. Indeed, given a cdh

instance (i, g, ga, gb) we apply our dl algorithm to (i, g, ga) which computes
a with nonnegligible probability. In this case, gab is found as (gb)a.

Likewise, a cdh solver with noticeable success can be efficiently trans-
formed into a ddh distinguisher with noticeable advantage. Indeed, given a
ddh instance (i, g, ga, gb, gc) the output h of the cdh solver equals gab with
nonnegligible probability. Now the ddh algorithm decides c = a b according
to whether gc = h.

In summary, we thus have

dl assumption ⇒ cdh assumption ⇒ ddh assumption .
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Remark 1.5.17. Regarding the ddh assumption we make the following re-
marks. Details can be found in [Bon98].

(1) If the groups Gi of the group family have orders with small prime factors
the ddh assumption is not satisfied. Indeed, suppose n = |Gi| has a
small prime factor p. Then a b ∈ Zn is more likely to be divisible by p
than c, if a, b, c ∈ Zn are uniformly distributed. This leads to an effective
distinguisher between triples (ga, gb, gab) and (ga, gb, gc).

(2) On the other hand, if the groups Gi are of prime order (or, more gener-
ally, the order has only large prime factors), then the ddh assumption
follows from the weaker perfect-ddh assumption. The latter assumption
states that no efficient algorithm decides (with overwhelming probabil-
ity) for any given triple (hA, hB, hC) whether it is of the form (ga, gb, gab)
or not.

The equivalence of these assumptions follows from a randomized self-
reduction argument, see [Bon98, Theorem 3.1].

(3) There are several group families in which the best known algorithm for
the ddh problem is a full discrete logarithm algorithm. One simple
example is the group family {Qp}, where p is a prime of the form 2q+1
with a prime q, and Qp is the subgroup of Z

∗
p of order q.

1.5.4 ElGamal encryption

ElGamal [ElG85] constructed an encryption scheme and a digital signature
scheme based on the discrete logarithm problem. We present first the en-
cryption scheme and then a variant of the signature scheme proposed by
Schnorr.

Cryptosystem 1.5.18. Let G = {Gi} be a group family with instance
generator IG. The ElGamal encryption scheme for G is the following
probabilistic encryption scheme.

• The key generator K(1k) applies the instance generator IG as a sub-
routine and outputs the key pair ((i, g, h), a). Here, (i, g) is a group in-
stance distributed as IG(1k), a is uniformly distributed on Zni

, where
ni = |Gi|, and h = ga ∈ Gi.

The public key is e = (i, g, h), the private key is d = a.

• The encryption of a message m ∈ Gi is E(i,g,h)(m) = (gb,mhb), where
b is a random element distributed uniformly on Zni

.

• The decryption of a ciphertext (c1, c2) is Da(c1, c2) = c2 c
−a
1 .
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Note that the decryption works, since for every a, b,m we have

Dd(Ee(m)) = Da(g
b,mhb) = m (ga)b (gb)−a = m .

We make the following remarks.

• ElGamal encryption is closely related to the Diffie-Hellman key agree-
ment protocol: Suppose (ga, a) is the key pair generated by party A.
Then if a party B sends a secret message to A, it sends gb, retaining b
secretly. Both parties can compute the Diffie-Hellman key gab which
is used to disguise the message m.

The difference is that A’s key a is here a long term secret key in
contrast to the short term secret keys in the Diffie-Hellman protocol.

• The message space is the group Gi. To encrypt arbitrary messages in
{0, 1}k we assume that there exist efficiently computable and reversible
injective maps from {0, 1}k into Gi, provided that 2k ≤ |Gi|.

• In the encryption Ee(m) = (gb,mhb) the operation m · hb can be
replaced by any unrelated group operation, say XOR.

• It can be shown that the security of the ElGamal encryption scheme
(in terms of polynomial indistinguishability) is equivalent to the in-
tractability of the ddh problem.

1.5.5 Schnorr identification and signature

The Schnorr identification and signature schemes [Sch90] are related cryp-
tosystems whose security is based directly on the hardness of the dl problem.
The Schnorr digital signature scheme is derived from the Schnorr identifi-
cation protocol, which in turn is based on a zero-knowledge proof of the
knowledge of a discrete logarithm.

Zero-knowledge proofs of knowledge

A zero-knowledge (ZK) proof of knowledge is a protocol between two parties,
called the prover and the verifier, that allows the prover to demonstrate
knowledge of a secret while revealing no information about the secret. They
can be used in identification protocols, i.e. protocols that prove that a party
is the one it claims to be.

Below we give a more detailed definition for ZK proofs of knowledge.
Firstly, by a protocol between two communicating parties we mean a pair
of algorithms interacting with each other, i.e. each algorithm receives the
output of the other algorithm. Each interactive algorithm is described by
its message-specification function, which determines the next message the
algorithm sends, depending on the received messages. By a secret we mean
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a solution y ∈ R(x) to the problem instance x of a function problem R, i.e.
an element y such that (x, y) ∈ R. Recall that D(R) = {x | R(x) 6= ∅}.
Definition 1.5.19. A proof of knowledge for the function problem R is a
protocol between two parties P and V being efficient algorithms receiving a
common input x, such that the following properties hold for any x ∈ D(R).

• Completeness. If the prover P knows a secret y ∈ R(x) (as private
input) then the verifier V accepts the prover’s claim, i.e. it outputs 1
after the interaction.

• Soundness. Let B be an algorithm impersonating the prover interact-
ing with V, and let p be the probability that V accepts. Then B can
be used in the following sense to reveal a secret:

There is an efficient algorithm K with oracle access to the message-
specification function of B, which outputs y ∈ R(x) with probability

s ≥ f|x|(p) ;

here (fk)k is a family of convex functions fk : [0, 1] → R with the
property that r(k) is negligible whenever fk(r(k)) is negligible. The
algorithm K must not depend on x and B and is called universal
knowledge extractor.

The soundness property formalizes the idea that only algorithms knowing
the secret are able to convince the verifier. Examples for function families
(fk)k with the required properties are:

(1) fk(r) = r, corresponding to the simple inequality s ≥ p,

(2) fk(r) = r − ε(k), where ε(k) is a negligible function,

(3) fk(r) = r2.

Definition 1.5.20. A ZK proof of knowledge is a proof of knowledge
for R between two parties P and V with the following additional property.

• Zero-knowledge property. A single algorithm can efficiently produce
for all x ∈ D(R), without interaction, an output which is indistinguish-
able from a protocol transcript, i.e. the collection of messages from P
and V resulting from an execution on common input x.

This property formalizes the following idea: The verifier gains no knowl-
edge from the interaction with the prover, since it could generate equivalent
transcripts by itself, so that in this way the verifier is able to simulate the
prover. In our definition of the zero-knowledge property we consider only
transcripts of the interaction of P with the “honest” verifier V, and a more
precise term for this property is honest-verifier zero-knowledge9.

9A more strict zero-knowledge property postulates that for every efficient algorithm W
impersonating the verifier there exists an efficient noninteractive algorithm that simulates
transcripts of the interaction of P with W, see [Gol01, Chapter 4].
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The identification scheme

Many zero-knowledge proofs consist of three passes, namely a commitment
of the prover, a challenge of the verifier, and a response of the prover to
the challenge. A protocol of this type forms a crucial part of the following
Schnorr identification protocol.

Cryptosystem 1.5.21. Let G be family of prime order groups with in-
stance generator IG. The Schnorr identification protocol is this:

• During setup phase a group instance (i, g) is selected and published
by applying IG(1k), where k is the security parameter. Let n be the
order of the group Gi. Each claimant P chooses a private key a ∈ Zn

and publishes h = ga as its public key.10

• P identifies itself to a verifier V by proving knowledge of its private
key a as follows.

(Commitment) P chooses randomly b ∈ Zn and sends r = gb ∈ Gi,

(Challenge) V sends a random c ∈ Zn,

(Response) P sends s = b+ a c ∈ Zn.

The verifier V accepts if and only if gs = r hc.

The choice of b and c is according to the uniform distribution on Zn.

The identification procedure is a ZK proof of knowledge of a discrete loga-
rithm. The corresponding function problem R consists of pairs ((i, g, ga), a),
where (i, g) is a group instance, a ∈ Zni

, and ni = |Gi|.
We justify briefly why the protocol has the required properties. Firstly,

if P and V act as prescribed then r hc = gb gac = gs as required, i.e. the
protocol is complete.

For the soundness property, let B be an algorithm impersonating the
prover interacting with V, and let p be the probability that V accepts.
The knowledge extractor K having oracle access to B’s message-specification
function obtains B’s commitment r, where r = gb, chooses two different
random challenges c0, c1 ∈ Zn and obtains B’s answers s0, s1. If V would
accept both answers we have gsi = r hci and thus si = b + a ci for i = 0, 1.
Since c0 6= c1 and n is prime K can compute the secret a = (s1−s0)/(c1−c0)
in this case. For K’s success probability we have s ≥ p2 − 1

n , and 1
n is

negligible in k.
Finally, the protocol has the zero-knowledge property, since an output

which has the same distribution as the protocol transcript (gb, c, b + a c)
can be generated without interaction as (gs/hc, c, s), where s is distributed
uniformly on Zn.

10Practically, the claimant P has to obtain a certificate from a trusted party binding
P’s identity with its public key.
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Furthermore, the security of the identification protocol depends on the
assertion that the secret value a is knowledge that cannot be efficiently
deduced from the public parameters. Hence it depends on the hardness
assumption of the discrete logarithm problem.

The signature scheme

The Schnorr signature scheme is deduced from the Schnorr identification
protocol. In order to make the protocol noninteractive, the challenge is
replaced by the value of a hash function.

Definition 1.5.22. A hash function family H = {Hi}i∈I is a set of
functions Hi : {0, 1}∗ → Ai from the binary strings into a finite set Ai such
that:

• Hi(m) is efficiently computable;

• every efficient algorithm A fails to find a collision for Hi:

Precisely, the probability pA(i) that A on input i outputs a pair
(m0,m1) such that Hi(m0) = Hi(m1) is negligible in |i|.

We recall that the groups Gi of a group family are represented by subsets
of {0, 1}∗, in particular hash functions can be applied to group elements.

Cryptosystem 1.5.23. Let G = {Gi} be a family of prime order groups
with instance generator IG, and let H = {Hi} be a family of hash functions
Hi : {0, 1}∗ → Zni

, where ni = |Gi|. The Schnorr signature scheme for
G is the following probabilistic digital signature scheme.

• The key generator K(1k) applies the instance generator IG as a sub-
routine and outputs the key pair ((i, g, h), a). Here, (i, g) is a group
instance distributed as IG(1k), a is uniformly distributed on Zn, where
n = |Gi|, and h = ga ∈ Gi.

The public key is e = (i, g, h), the private key is d = a.

• The signature of a message m is

Sa(m) = (c, s) = (Hi(m, r), b+ a c) ∈ Z
2
n ,

where b is a random element distributed uniformly on Zn, and r = gb.

• The verification of a signature (c, s) for a message m is

V(i,g,h)(m, (c, s)) = yes if and only if Hi(m, g
s h−c) = c .

Remark 1.5.24. Provided the group family satisfies the dl assumption, the
Schnorr signature scheme is existentially unforgeable under an adaptive
chosen-message attack, see [PS00, Theorem 14].





Chapter 2

Cryptosystems based on

semigroup actions

The exponentiation map Zn × G → G, (a, x) 7→ xa in a finite cyclic group
(G, ·) of order n is crucial for the discrete logarithm based cryptosystems.
This is an example for a semigroup action, namely the commutative semi-
group (Zn, ·) acts on the setG. As observed by Maze, Monico, and Rosenthal
([MMR07], see also [Mon02] and [Maz03]) the framework of commutative
semigroup actions leads to generalized Diffie-Hellman and ElGamal cryp-
tosystems.

This chapter deals with semigroup actions and their use to create cryp-
tosystems. We extend the framework of [MMR07] to include also noncom-
mutative semigroups. This enables us to discuss a larger variety of examples
and leads to more aspects and tools for studying the difficulty of the semi-
group action problems. We also present new semigroup action based frame-
works for two identification protocols and one digital signature scheme. In
the last section we show that many proposals of cryptosystems in the lit-
erature of the last decade can be embedded into the setting of semigroup
actions.

2.1 Semigroup actions

Definition 2.1.1. Let (A, ·) be a semigroup and X be a set. A (left)
semigroup action of A on X is a map

ρ : A×X → X , (a, x) 7→ ρ(a, x) = a . x ,

such that (a · b) . x = a . (b . x) for all a, b ∈ A and x ∈ X. If such an action
exists, the set X is called an A-set .

We often abbreviate (a · b) . x as a b . x. Note that b . x = b′ . x implies
a b . x = a b′ . x for all a, b, b′ ∈ A and x ∈ X.
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Remark 2.1.2. For any semigroup action of A on X, we have by definition
a semigroup homomorphism

A −→ T (X) ,

a 7−→ [x 7→ a . x ]

from A into the monoid T (X) of all maps X → X. Conversely, any semi-
group homomorphism ψ : A→ T (X) defines a semigroup action of A on X
by a . x := [ψ(a)](x) for a ∈ A and x ∈ X.

If (A, ·) is a group with neutral element 1 and the semigroup action
satisfies 1 . x = x for any x ∈ X, then we speak of a group action. In analogy
to the above remark, group actions correspond to group homomorphisms
A→ S(X) from A into the group S(X) of invertible maps X → X.

We introduce some nonstandard, but convenient notation.

Definition 2.1.3. An action of a semigroup A on a set X is called semi-
transitive if there exists an element g ∈ X such that X = A . g, where A . g
denotes the orbit {a . g | a ∈ A} of g. In this case, the set X is called a
monogenic A-set, and g is called a generator for X.

For any A-set X and any g ∈ X, the orbit A . g ⊆ X will be a monogenic
A-set in a natural way. For the subsequent applications we thus often assume
the semigroup action to be semitransitive.

Remark 2.1.4. With respect to group actions semitransitivity, transitivity,
and the existence of only one orbit are equivalent. In this case every x ∈ X
is a generator, and the surjective orbit map

ϕx : A→ X , a 7→ a . x

induces a bijection between X and the set A/ℓ Stab(x) denoting the left
cosets of A with respect to the stabilizer subgroup Stab(x) of X. The group
action is called simply transitive if the map ϕx is bijective. Simply transitive
group actions in cryptography were studied by Couveignes [Cou06].

Example 2.1.5. The exponentiation map Zn×G→ G, (a, x) 7→ a . x := xa

in a cyclic group (G, ·) of order n with generator g makes G a monogenic
Zn-set.

As mentioned in the beginning of this chapter, this is the motivating
example for studying semigroup actions in cryptography. It may be helpful
to think in general of A as a generalized “space of exponents” acting on a
set X. As we will see, algebraic properties of A have implications on the
security of the corresponding cryptosystems presented below.
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Some examples of semigroup actions

Example 2.1.6. These are examples of semigroup actions ρ : A×X → X,
ρ(a, x) = a . x.

(1) Let (A, ·) be a semigroup, X = A, and ρ the semigroup operation:

a . x := a · x .

(2) Let X be a set, let A be a subsemigroup of the monoid T (X) of all maps
a : X → X, and let ρ be the evaluation:

a . x := a(x) .

(3) Let (A, ·) be a group, X = A, and ρ be the group conjugation:

a . x := a · x · a−1 .

This is a group action and obeys the following two special rules

a . (x · y) = (a . x) · (a . y) , a . (x . y) = (a . x) . (a . y) .

(4) Let (R,+, ·) be a semiring (with zero), X a semimodule over R,
A = (R, ·), and ρ the R-multiplication:

a . x := a x .

This action obeys the special rules

a . (x+ y) = a . x+ a . y , (a+ b) . x = a . x+ b . x .

In particular, this example applies to the Z-module structure of abelian
groups, see Example 2.1.5.

Remark 2.1.7. Right and two-sided actions can be recognized also as left
actions:

(a) Let (R, ·) be a semigroup and X be a set. A right semigroup action of
R on X is a map

X ×R→ X , (x, r) 7→ x . r ,

such that x . (a · b) = (x . a) . b for all a, b ∈ A and x ∈ X.

Consider the dual semigroup Rop of R, i.e. the same set with reversed
operation. Then

a . x := x . a

defines a left action of A = Rop on X.
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(b) Let L×X → X be a left and X ×R→ X be a right semigroup action,
and suppose that

(ℓ . x) . r = ℓ . (x . r) =: ℓ . x . r

for ℓ ∈ L and r ∈ R. In this case we speak of a two-sided semigroup
action of L and R on X.

This defines a left action of A = L×Rop on X by

(ℓ, r) . x = ℓ . x . r .

(c) We restate (b) of this remark in different notation: Let G × X → X
and H × X → X be actions of semigroups G and H on a set X, and
suppose that

g . (h . x) = h . (g . x)

for g ∈ G and h ∈ H. Then for A = G×H there is a composite action

(g, h) . x := g . (h . x) = h . (g . x) .

Example 2.1.8. These are further examples of semigroup actions.

(1) Let (H, ·) be a semigroup. The semigroup operation defines a two-
sided action of H on itself. By Remark 2.1.7 (b), there is an action of
A = H ×Hop on X = H, given by

(a1, a2) . x := a1 · x · a2 .

(2) Let (X, ·) be a group, G = X, H = Z, and consider the group conjuga-
tion G ×X → X and the exponentiation H ×X → X. These actions
commute as in Remark 2.1.7 (c), hence there is an action of A = X ×Z

on X, given by

(a, n) . x := a · xn · a−1 .

2.2 Semigroup action problems

In this section we state the analogs of the discrete logarithm problem and
the Diffie-Hellman problems in the context of a semigroup action (cf. Ex-
ample 2.1.5), and discuss the hardness of these problems.

From now on we assume that both the semigroup operation A×A→ A
and the action map A × X → X are efficiently computable. A formal
definition of efficiency depends on an asymptotic setting and will be given
later (Definition 2.3.1). In this section the intuitive meaning of efficiency
will be sufficient.
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The semigroup action discrete logarithm problem

Definition 2.2.1. Let X be a monogenic A-set and g be a generator. The
semigroup action discrete logarithm (sdl) problem is this:

Given h ∈ X, find a ∈ A such that h = a . g.

We note that the sdl problem need not to have a unique solution, in fact
every a′ ∈ A with a . g = a′ . g will also be one. We introduce a notation.
For x ∈ X define an relation ∼x on A by

a ∼x a
′ :⇔ a . x = a′ . x .

One readily verifies that ∼x is an equivalence relation and a left congruence,
i.e. a ∼x a

′ implies b a ∼x b a
′ for all b ∈ A. With this notation, the sdl

problem is unique up to ∼g.

The sdl problem has been called the semigroup action problem (SAP) in
[Mon02, Maz03, MMR07]1. We note that for solving the sdl problem there
is an analog of Pollard’s rho algorithm which works well if the semigroup
A has a large fraction of invertible elements, see [Mon02, Algorithm 4.4] or
[MMR07, Section 2.1].

Commutative semigroup action Diffie-Hellman problems

For the Diffie-Hellman problems we state the problems for simplicity first in
the commutative case.

Definition 2.2.2. Let A be a commutative semigroup, letX be a monogenic
A-set and let g be a generator. The semigroup action computational
Diffie-Hellman (scdh) problem is this:

Given hA, hB ∈ X, find the element a b . g = b a . g such that hA = a . g
and hB = b . g for some a, b ∈ A.

It is easy to show that in the commutative case the scdh problem has
a unique solution, i.e. the demanded element a b . g depends only on hA

and hB, see Lemma 2.2.4 below. Clearly, if one has a solution of the sdl

problem for either hA or hB, then also the scdh problem is solved, since
a b . g = a . hB = b . hA.

Definition 2.2.3. Let A,X, g as before. The semigroup action decision
Diffie-Hellman (sddh) problem is this:

Given hA, hB, hC ∈ X, decide whether the triple (hA, hB, hC) is of the
form (a . g, b . g, a b . g) for some a, b ∈ A or not.

1In order to differentiate between the analogs of the discrete logarithm problem and the
various Diffie-Hellman problems in the semigroup action setting we apply the convention
to use the common abbreviation of the problem (e.g. dl or cdh) preceeded by s.
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We note that the first two problems are search or function problems
whereas the last is a “distinguish” problem. The difficulty of these semigroup
action problems will be discussed in many examples appearing later in this
section (Sections 2.2.2 and 2.2.3).

2.2.1 Noncommutative semigroup actions

Many applications of semigroup actions to public-key cryptography (see Sec-
tion 2.4) use noncommutative semigroups. Before stating the semigroup ac-
tion Diffie-Hellman problems in the noncommutative case we prove a simple
but useful lemma.

Lemma 2.2.4. Let X be an A-set, and let a, a′, b ∈ A and x ∈ X.

(1) If a . x = a′ . x and both a and a′ commute with b, then a b . x = a′ b . x.

(2) Suppose a . x = a′ . x, b . x = b′ . x, and both a and a′ commute with
either b or b′. Then a b . x = a′ b′ . x.

Proof. (1) follows simply from

a b . x = b a . x = b a′ . x = a′ b . x .

For (2), if a and a′ commute with b, then a b . x = a′ b . x by (1), hence
a b . x = a′ b′ . x. Similarly, if a and a′ commute with b′, then a′ b′ . x = a b′ . x
by (1), hence a′ b′ . x = a b . x.

In general a . x = a′ . x does not imply a b . x = a′ b . x, as the following
example shows. Thus Lemma 2.2.4 (1) does not hold without any commu-
tativity assumption (see also Remark 2.2.6).

Example 2.2.5. Suppose A = S3 acts naturally on X = {1, 2, 3}. Let
x = 3, and let a = ( ), a′ = (1 2) and b = (2 3). Then we have
a . x = a′ . x = 3, but a b . x = 2 and a′ b . x = 1, so that a b . x 6= a′ b . x.

Recall that a ∼x a
′ means a . x = a′ . x, and that ∼x is a left congruence.

Let ∼ :=∼x. With this notation Lemma 2.2.4, (1) reads: Let a, a′, b ∈ A
and suppose a ∼ a′. If both a and a′ commute with b, then a b ∼ a′ b.
Indeed, a b ∼ b a ∼ b a′ ∼ a′ b.

Remark 2.2.6. We discuss some possibly weaker conditions under which
a ∼ a′ implies a b ∼ a′ b.

(1) The commutativity assumption a b = b a and a′ b = b a′ can obviously
be weakened to a b ∼ b a and a′ b ∼ b a′ (what might be called local
commutativity). It even suffices that b′ exists with b ∼ b′ and a b′ ∼ b′ a
and a′ b′ ∼ b′ a′.
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(2) Suppose a ∼ a′ and a is invertible. Then a b ∼ a′ b is equivalent to the
commutativity condition a−1 a′ b ∼ b a−1 a′.

Proof. If a is invertible, then a b ∼ a′ b is equivalent to b = a−1 a b ∼
a−1 a′ b. Now, a ∼ a′ implies b = b a−1 a ∼ b a−1 a′, thus the equivalence
is proved.

Similarly, if a′ is invertible, then a b ∼ a′ b is equivalent to (a′)−1 a b ∼
b (a′)−1 a.

Noncommutative semigroup action Diffie-Hellman problems

When the semigroup is noncommutative some care has to be taken in the
definition of the Diffie-Hellman problem analogs. We consider two different
semigroup action computational Diffie-Hellman problems.

Definition 2.2.7. Let X be a monogenic A-set and g be a generator.

• The general semigroup action computational Diffie-Hellman
(gscdh) problem is this:

Given hA, hB ∈ X, find an element a b . g such that hA = a . g and
hB = b . g for some a, b ∈ A.

• Let CA, CB be commuting subsets of A, i.e. a b = b a for all a ∈ CA

and b ∈ CB. The special semigroup action computational Diffie-
Hellman (sscdh) problem with respect to CA and CB is this:

Given hA ∈ CA . g and hB ∈ CB . g, find the element a b . g = b a . g
such that hA = a . g and hB = b . g for some a ∈ CA and b ∈ CB.

Whereas the gscdh problem has in general several solutions, the com-
mutativity requirement implies by Lemma 2.2.4 that the sscdh problem has
a unique solution (dependent only on the inputs hA and hB).

Definition 2.2.8. Let X be a monogenic A-set with generator g, and let
CA, CB be commuting subsets of A. For hA = a . g and hB = b . g with
a ∈ CA and b ∈ CB define

dh(hA, hB) := a b . g = b a . g .

The resulting map dh : CA . g×CB . g → X is called the semigroup action
Diffie-Hellman function .

Note that if the semigroup A is commutative, the scdh problem (see
Definition 2.2.2), the gscdh problem, and the sscdh problem with respect
to CA = A and CB = A are the same.

We remark that in general a solution to the gscdh instance (hA, hB) can
be deduced from a solution to the sdl problem for hA, since a b . g = a . hB.
On the other hand, for the sscdh problem solutions to the sdl problem
might not be of any help.
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2.2.2 Problems in related semigroup actions

We consider modified and extended semigroup actions, and compare the
difficulty of the problems there with the original ones.

Modified semigroup actions

Let ρ : A×X → X be an action of a semigroup A on a set X. We consider
the following modifications of the semigroup action.

(a) Replacement of the semigroup A by an isomorphic semigroup A′.

(b) Replacement of the set X by an isomorphic A-set X ′.

We will see that the hardness of the semigroup action problems may
depend on the isomorphisms if they are not efficiently computable in both
directions. This motivates the importance of clarifying how the sets A andX
are represented.

For modification (a), let ψ : A′ → A be a semigroup isomorphism and
consider the derived action of A′ on X, given by

ρ′ : A′ ×X → X , ρ′(a′, x) := ρ(ψ(a′), x) .

A generator g for the A-set X is also a generator for X as an A′-set X.
We suppose that ρ′ is like ρ efficiently computable (this is true e.g. if ψ is
efficiently computable).

The difficulty of the sdl problems in ρ and ρ′ are in general not compa-
rable: If h ∈ X is given, solutions a to the sdl problem in A, i.e. elements
a ∈ A with h = a . g, correspond to solutions ψ−1(a) to the sdl problem
in A′, but the function ψ−1 may not be efficiently computable.

However, the scdh problems2 in ρ and ρ′ are equivalent: If hA, hB ∈ X
are given, any solution k to the scdh problem in A, i.e. an element k such
that hA = a . g, hB = b . g and k = a b . g for some a, b ∈ A, is also a solution
to the scdh problem in A′.

Example 2.2.9. Let G be a cyclic group of order n (with efficiently com-
putable group operation), and let ρ be the group operation. Any g ∈ G is a
generator for this action. The sdl problem in ρ is easy, since a = h g−1 is a
solution to the instance h. Hence, the scdh problem is also easy.

Now let z be a generator of the cyclic group G and let ψ be the group
isomorphism given by

ψ : Zn → G , a 7→ za .

2This paragraph applies to both versions of the scdh problem, namely the gscdh and
the sscdh problem.
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This leads to the action of (Zn,+) on G given by ρ′(a, x) := za x. The sdl

problem in ρ′ now asks for a when given g and za g. This is equivalent to
the discrete logarithm problem in the group G (and thus may be hard).

But the scdh problem remains easy in ρ′, since for the instance
(hA, hB) a solution is given by k = hA hB g

−1. Indeed, if hA = a . g = za g,
hB = b . g = zb g, then

hA hB g
−1 = za g zb g g−1 = za+b g = (a+ b) . g .

Regarding modification (b), let ρ′ be an (efficiently computable) action
of A on a set X ′, and let ϕ : X → X ′ be an isomorphism of A-sets. This
means that ϕ is bijective and ϕ(a . x) = a . ϕ(x) for all a ∈ A and x ∈ X. If
X is monogenic with generator g, then X ′ is also monogenic, with generator
g′ = ϕ(g).

In this case, neither the sdl problem nor the scdh problem in ρ and ρ′

are equivalent in general: An instance h′ of the sdl problem in ρ′ cor-
responds to the instance ϕ−1(h′) in ρ, but the function ϕ−1 may not be
efficiently computable. Similarly, an instance (h′A, h

′
B) of the scdh problem

in ρ′ corresponds to the instance (ϕ−1(h′A), ϕ−1(h′B)) of the scdh problem
in ρ, and the solution k in ρ corresponds to the solution ϕ(k) in ρ′, but the
functions ϕ and ϕ−1 may not be efficiently computable.

Example 2.2.10. Let A be the semigroup (Zn, ·), and let ρ be the action of
A on X = A given by the semigroup operation. Any g ∈ Z

∗
n is a generator

for this action. The sdl problem in ρ is easy, since a = h g−1 is a solution
to the instance h. Hence, the scdh problem is also easy.

Now let G be a cyclic group of order n and consider the action ρ′ of A
on X ′ = G by exponentiation, see Example 2.1.5. For every generator z of
G the map

ϕ : Zn → G , x 7→ zx ,

is an isomorphism of A-sets. But the sdl and the scdh problems in ρ′ are
the usual discrete logarithm and Diffie-Hellman problems in the group G
(and thus may be hard).

Extended semigroup actions

Definition 2.2.11. Let (A, ·) be a subsemigroup of a semigroup (Â, ·), let
X be a subset of a set X̂, and let ρ : A ×X → X and ρ̂ : Â × X̂ → X̂ be
semigroup actions.

The action ρ̂ is called an extension of ρ if ρ̂(a, x) = ρ(a, x) for all a ∈ A
and x ∈ X.

Remark 2.2.12. If A is not a subset of Â, but there exists a semigroup
monomorphism ι : A →֒ Â that is efficiently computable in both directions,
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then we can identify (also with respect to computational issues) A with ι(A),
which is a subsemigroup of Â. In this way, one can also consider extensions
of semigroup actions A×X → X to Â× X̂ → X̂.

If X is a monogenic A-set and if g ∈ X is a generator of X, then we may
assume that X̂ = Â . g, so that X̂ is a monogenic Â-set with generator g.

The semigroup action problems are in general easier in the extended
semigroup, since the “exponent space” A will be enlarged to Â. However,
often one cannot use a solution of the problem in the extended semigroup
action for the original problem. We discuss the situation for the sdl and
the gscdh problems.

Remark 2.2.13. Consider an instance of the sdl problem with respect to ρ:
Given h ∈ X, find a ∈ A such that h = a . g.

This sdl problem instance might be easier in the extended action ρ̂.
Any element â in the extended semigroup Â such that h = â .̂ g solves the
problem. But this helps only in the case when â is also in A.

Example 2.2.14. Let Â be the monoid T (X) of all maps X → X and let A
be a subsemigroup of Â, both acting naturally on X. Suppose there exists
g ∈ X with A . g = X. Given h ∈ X, it is easy to find some map â ∈ Â
with â(g) = h (take e.g. the transposition â = (g h)), but it might be hard
to find a particular map a in the subsemigroup A such that a(g) = h.

Remark 2.2.15. Consider an instance of the gscdh problem with respect
to ρ: Given hA, hB ∈ X, where hA = a . g for some a ∈ A, find the element
a . hB.

This gscdh problem instance might again be easier in the extended
action ρ̂. Any â .̂ hB for some â ∈ Â with hA = â .̂ g will be a solution. But
â .̂ hB will in general not be a solution for the original problem.

However, if hB = b̂ .̂ g for some b̂ ∈ Â and hA = a . g for some a ∈ A such
that b̂ commutes with both â and a, then â .̂ hB will be a solution. Indeed
we have â .̂ hB = â b̂ . g = a b̂ . g = a . hB by Lemma 2.2.4 (1).

2.2.3 Two-sided group actions

Several proposals of semigroup action based cryptosystems [Maz03, MMR07,
SU06] use a particular kind of a two-sided semigroup action. In this section
we study two-sided actions (see Example 2.1.8 (1)) in general, but restrict
ourselves to group actions:

Example 2.2.16. Let G be a group and Gop its dual group. We consider
the two-sided action of the group A = G×Gop on the set X = G, given by

(a1, a2) . x := a1 · x · a2 .
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The sdl problem in this action is easy. Indeed, the solutions to the
instance h with respect to a generator g are given by

(a1, a2) = (u g−1, u−1 h) ,

where u ∈ G. Particular solutions are for example (g−1, h) and (h g−1, 1).

Remark 2.2.17. If we restrict the action to a subgroup A of G×Gop the sdl

problem might become harder. We discuss two examples.

(1) A = H1 ×H2, where H1 ≤ G and H2 ≤ Gop are subgroups.

A solution (u g−1, u−1 h) to the sdl problem is in A if and only if
u g−1 ∈ H1 and u−1 h ∈ H2, which is equivalent to u ∈ H1 g ∩ hH2.
It appears to be difficult in general to find such an u.

(2) A = {(a, a−1) | a ∈ G}.
The subgroup A is isomorphic to G and the corresponding action of G
on G is the usual group conjugation, see Example 2.1.6, (3). A solution
(u g−1, u−1 h) to the sdl problem is in A if and only if u−1 h = g u−1,
i.e. h = u g u−1. Thus we have to find a conjugator, which appears also
to be hard in general.

As noted in Remark 2.2.15 and Section 2.2.1, when a semigroup action
computational Diffie-Hellman (scdh) instance is given we can use a solution
in an extended action only if some commutativity condition is satisfied. We
present an example where an extension to a commutative semigroup action
helps indeed to solve the scdh problem.

Example 2.2.18. Let G = Sn = S(M) be the symmetric group, i.e. the
group of bijections of the set M = {1, 2, . . . , n}, and let H ≤ G be an abelian
subgroup. Consider the two-sided action of H ×H on G, given by

(a1, a2) . x := a1 · x · a2 .

Then, the scdh problem for this group action appears to be easy.

Outline of the argument. Let K be a maximal abelian subgroup of
G = S(M) containing H, and consider the extended two-sided group ac-
tion of K ×K on G. We will sketch a method to solve the sdl problem in
the extended action. This will enable us to solve the scdh problem in the
extended action, and since K is abelian, this solution will also be valid in
the original action, see Remark 2.2.15.

Thus it suffices to consider the sdl problem in the case when H is a max-
imal abelian subgroup of S(M). The maximal abelian subgroups of S(M)
are described by an article of Winkler, see [Win93, Theorem 1]. According
to the article, there is a partition P = {C1, . . . , Cr} of M = {1, 2, . . . , n}
and there are abelian group operations +i on Ci for every i such that the
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following holds: If we define an action of the abelian group C1 × · · ·×Cr on
the set M = C1 ∪ · · · ∪ Cr by setting

(c1, . . . , cr) · x = ci +i x

whenever x ∈ Ci, then H is the image of the corresponding (injective) group
homomorphism C1 × · · · × Cr → S(M). We remark that the orbits of this
action are exactly the classes Ci of the partition P .

Now consider an instance of the sdl problem. That is, g, h ∈ S(M) are
given such that for some ai, bi ∈ Ci we have

h(x) = (a1, . . . , ar) · g((b1, . . . , br) · x)

for any x ∈M . Then we can use the following information to get (b1, . . . , br).

(1) Suppose x ∈ Ci and h(x) ∈ Cj . Then (b1, . . . , br) · x = bi +i x and
h(x) = aj +j g(bi +i x), so that g(bi +i x) ∈ Cj . Consequently,

bi +i x ∈ g−1(Cj) ∩ Ci.

(2) Suppose x ∈ Ci1 and y ∈ Ci2 are such that h(x), h(y) ∈ Cj . Then their
difference eliminates aj , so that

h(x) −j h(y) = g(bi1 +i1 x) −j g(bi2 +i2 y).

Heuristically, to get information on the bi (1) will be useful if there are many
small classes Ci, and (2) will be useful if there are few large classes.

Once (b1, . . . , br) is found, we can compute aj = h(x) −j g(bi +i x) for
any x ∈ Ci with h(x) ∈ Cj to get (a1, . . . , ar).

2.3 Cryptosystems

We present cryptosystems based on semigroup actions in an appropriate
asymptotic setting. First we adapt the notion of a group family, Defini-
tion 1.5.6, for semigroup actions.

Definition 2.3.1. A family of semigroup actions (A,X) = {(Ai, Xi)}
is a set of semitransitive actions ρi of a semigroup (Ai, ·i) on a set Xi,
where i ranges over an infinite index set I ⊆ {0, 1}∗. We assume that
Ai, Xi ⊆ {0, 1}∗ and both the operation ·i and the action ρi are efficiently
computable.

An instance generator IG is an efficient algorithm that on input 1k

outputs some random index i and a generator g for the monogenic Ai-set Xi.
The pair (i, g) is called a semigroup action instance .
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For semigroup action based cryptosystems it is often necessary to con-
struct pairs of semigroup elements with a certain commutativity property.

Definition 2.3.2. Let (A,X) be a family of semigroup actions. A pair
of compatible key generators (KA,KB) consists of efficient algorithms
KA, KB which for a given semigroup action instance (i, g) output random
elements in Ai, such that if KA outputs a and if KB outputs b then always
a b . g = b a . g.

Equivalently, the output range CA of KA(i, g) and the output range CB

of KB(i, g) are subsets of Ai satisfying the commutativity condition

a b ∼g b a

for all a ∈ CA and b ∈ CB.

Example 2.3.3. Let G = {Gi} be a group family. For every i consider the
exponentiation map

Zni
×Gi → Gi , (a, x) 7→ a . x := xa ,

where ni := |Gi|, which is a semitransitive action of the semigroup
Ai := (Zni

, ·) on the set Xi := Gi. Since the group operation of Gi is
efficiently computable, this action is also efficiently computable, see Re-
mark 1.5.7. Furthermore, since the group size ni = |Gi| can be determined
efficiently, the semigroup operation of (Zni

, ·) is also efficiently computable.
Thus, (A,X) = {((Zni

, Gi)} is a semigroup action family.
An instance generator IG for the group family is also an instance gen-

erator for the corresponding semigroup action family in a natural way.
A pair (K,K) of compatible key generators is given by the algorithm K

that on input (i, g) outputs random elements distributed uniformly on
Ai = {0, 1, . . . , |Gi| − 1}.

The next definition states the analog of the decision Diffie-Hellman (ddh)
assumption, Definition 1.5.16, for a family of semigroup actions. In view
of Definition 2.2.7, it formulates the intractability of a “special semigroup
action decision Diffie-Hellman (ssddh)” problem.

Definition 2.3.4. Let (A,X) be a family of semigroup actions with instance
generator IG, and let (KA,KB) be a pair of compatible key generators. Let
µk be the probability distributions on quintuples (i, g, hA, hB, hC), where

• (i, g) is distributed as IG(1k);

• hA = a . g and hB = b . g, where a ∈ Ai is distributed as KA(i, g) and
b ∈ Ai is distributed as KB(i, g);

• hC is uniformly distributed on Xi.
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Let dh(hA, hB) denote the semigroup action Diffie-Hellman function. The
semigroup action decision Diffie-Hellman assumption (sddh as-
sumption) is satisfied if every efficient algorithm D has negligible advantage
∆D(k), defined as the difference

Pµk
(D(i, g, hA, hB,dh(hA, hB)) = 1) − Pµk

(D(i, g, hA, hB, hC) = 1) .

Loosely speaking, the sddh assumption states that triples of the
form (hA, hB,dh(hA, hB)) are indistinguishable from triples of the form
(hA, hB, hC).

Remark 2.3.5. A necessary condition for the sddh assumption to be satisfied
is that for every (i, g) the distribution of dh(hA, hB) is computationally
indistinguishable from the uniform distribution onXi; here, the distributions
of hA and hB are induced by the key generators KA and KB as in the
definition above.

If Ai = (Zni
, ·) acts on a cyclic group Gi as in Example 2.3.3, the sddh

assumption is the usual ddh assumption. In Remark 1.5.17 (1) we have seen
that if the order n = ni contains a small prime factor p, then the distribution
of dh(hA, hB) is distinguishable from the uniform distribution on Zn. The
reason for this was that the product a b ∈ Zn is more likely to be divisible
by p than a random element c ∈ Zn.

A similar situation occurs in any finite monoid A with a significant frac-
tion of noninvertible elements E := A\A∗. In this case a b ∈ A is more likely
to be noninvertible than a random element c ∈ A, since a b ∈ E whenever
a ∈ E or b ∈ E. This may lead to an effective distinguisher between the
distributions of a b . g and c . g. To avoid this phenomenon one should choose
a monoid A that has only very few noninvertible elements, so that, loosely
speaking, it is “close to a group”.

If we consider group actions, there are examples where dh(hA, hB) is
exactly uniformly distributed. More precisely, let a group A act transitively
on a set X, and let CA and CB be commuting subgroups of A, i.e. a b = b a
for a ∈ CA and b ∈ CB, and suppose A = CACB. In this case A is isomorphic
to (CA × CB)/N , where N is the kernel of the group epimorphism

CA × CB → A , (a, b) 7→ a b .

Thus, if a ∈ CA and b ∈ CB are uniformly distributed, then a b is uni-
formly distributed on A. Now, for any g ∈ X we have X ∼= A/ℓ Stab(g) by
Remark 2.1.4, and hence a b . g is uniformly distributed on X.

2.3.1 Semigroup action Diffie-Hellman key agreement

We present a generalization of the Diffie-Hellman key-agreement protocol,
Cryptosystem 1.5.12, to the context of semigroup actions. It is a more com-
plex version of the protocol for commutative semigroup actions presented in
[Mon02, Protocol 4.2] and [MMR07, Protocol 2.1].
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Cryptosystem 2.3.6. Let (A,X) be a family of semigroup actions with
instance generator IG, and let (KA,KB) be a pair of compatible key gener-
ators. The following semigroup action Diffie-Hellman key agreement
protocol establishes a key e shared by two parties, A and B, communicating
over an insecure, but authenticated channel.

• During setup phase an index i ∈ I and a generator g ∈ Xi is selected
and published by applying IG(1k), where k is the security parameter.

• A uses KA to choose a random element a ∈ Ai and sends
hA = a . g ∈ Xi to B, retaining a secretly.

• B uses KB to choose a random element b ∈ Ai and sends
hB = b . g ∈ Xi to A, retaining b secretly.

• A computes a . hB and B computes b . hA. Their common key is
e = a b . g = b a . g ∈ Xi.

Speaking informally, a key agreement protocol is secure (in the presence
of an eavesdropper) if the agreed key is indistinguishable from a random
key, even if one is given all transmitted protocol messages.

Remark 2.3.7. It is not hard to show that the semigroup action Diffie-
Hellman key agreement protocol is secure if and only if the sddh assumption
is satisfied. The proof method is similar to the security proof of the semi-
group action ElGamal encryption scheme, which is carried out it detail in
the next section (Proposition 2.3.9).

2.3.2 Semigroup action ElGamal encryption

We present a generalization of the ElGamal encryption scheme, Cryptosys-
tem 1.5.18, to the context of semigroup actions, and show that under the
sddh assumption the cryptosystem is secure under a chosen plaintext at-
tack. It is a more complex version of the cryptosystem for commutative
semigroup actions presented in [Mon02, Protocol 4.3].

Cryptosystem 2.3.8. Let (A,X) be a family of semigroup actions, and
suppose that for every i ∈ I there exists an efficiently computable group
operation ⊕ on Xi. Let IG be an instance generator for (A,X), and let
(KA,KB) be a pair of compatible key generators.

The semigroup action ElGamal encryption scheme is the follow-
ing probabilistic encryption scheme.

• The key generator K(1k) applies the algorithms IG and KA as sub-
routines. It outputs a key pair ((i, g, h), a), where (i, g) is a semigroup
action instance distributed as IG(1k), a ∈ Ai is a key distributed as
KA(i, g), and h is the element a . g ∈ Xi.

The public key is e = (i, g, h), the private key is d = a.
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• The encryption of a message m ∈ Xi is E(i,g,h)(m) = (b . g,m ⊕ b . h),
where the algorithm KB is used to choose the random b ∈ Ai.

• The decryption of a ciphertext (c1, c2) is Da(c1, c2) = c2 ⊖ a . c1.

Note that the decryption works, since for every a, b,m we have

Dd(Ee(m)) = Da(b . g,m⊕ b . h) = m⊕ b a . g ⊖ a b . g = m .

Proposition 2.3.9. Let (A,X) be a family of semigroup actions with in-
stance generator IG and let (KA,KB) be a pair of compatible key generators.
If the sddh assumption holds, then the semigroup action ElGamal encryp-
tion scheme is secure under a chosen plaintext attack.

Proof. Let A be an efficient adversary. Let εA(k) be its advantage in the in-
distinguishability experiment of Definition 1.3.7. We will use A to construct
an efficient distinguisher D for the sddh problem having the same advantage
∆D(k) = εA(k). By the sddh assumption this advantage is negligible, and
hence the encryption scheme is secure.

Let (i, g, hA, hB, hC) be the input of the distinguisher D. That is, (i, g) is
a semigroup action instance distributed as IG(1k); hA = a . g and hB = b . g
are elements in Xi, where a ∈ Ai is distributed as KA(i, g) and b ∈ Ai

is distributed as KB(i, g); hC is an element uniformly distributed on Xi.
The algorithm D has to simulate the challenger in the indistinguishability
experiment. It interacts with A as follows:

(1) D publishes (i, g, hA) as the public key;

(2) A chooses two messages m0,m1 ∈ Xi and sends them to D;

(3) D chooses a bit β ∈ {0, 1} uniformly at random and sends (hB,mβ⊕hC)
as the ciphertext c of the message mβ to A;

(4) A guesses the bit β, and D outputs 1 if and only if the guess is correct.

Note that A can perform a chosen plaintext attack, since the public encryp-
tion key is known. The behaviour of A depends on the input quintuple of
D. There are two cases, depending on hC.

(a) It holds hC = dh(hA, hB). Then hC = b . hA, and in A’s view D per-
formed exactly like a challenger who is using the cryptosystem. By
assumption A guesses correctly with probability 1

2 + εA(k).

(b) The element hC is uniformly distributed on Xi (and is independent of
hA and hB). In this case D did not perform like a challenger who is using
the cryptosystem properly, since c is not an encryption of mβ . However,
since mβ ⊕ hC is uniformly distributed on Xi, as hC is, no information
about mβ is revealed. Thus the adversary A can guess correctly only
with probability 1

2 .



2.3. Cryptosystems 45

We see that P(D(i, g, hA, hB,dh(hA, hB)) = 1) = 1
2 + εA(k) and

P(D(i, g, hA, hB, hC) = 1) = 1
2 , thus the advantage ∆D(k) of the distin-

guisher D equals εA(k).

Remark 2.3.10. The converse of the proposition can also be shown, namely
the security of the semigroup action ElGamal encryption scheme implies the
sddh assumption.

We sketch the proof. Given a distinguisher D for the sddh problem, we
construct an adversary A, which acts in the indistinguishability experiment
as follows. Given the public key (i, g, h), A chooses m0 = 0 (the neutral
element of the group (Xi,⊕)) and m1 ∈ Xi, uniformly at random. Upon
receiving an encryption (c1, c2) = (b . g,mβ ⊕ b . h), A guesses β = 0 if and
only if D(i, g, h, c1, c2) = 1. It is easy to see that if D has advantage ∆D(k),
then A has the same order of advantage, namely 1

2∆D(k).

The semigroup action ElGamal encryption scheme is, like classical El-
Gamal encryption, vulnerable to a chosen ciphertext attack: Suppose the
encryption

(c1, c2) = (b . g,m⊕ b . h)

of a message m is given, then for any m′ one can apply the decryption oracle
to the ciphertext

(c1,m
′ ⊕ c2) = (b . g,m′ ⊕m⊕ b . h)

to find out m′ ⊕m and thus m.

2.3.3 Identification protocols and digital signatures

We present semigroup action identification protocols, which are based on
a zero-knowledge (ZK) proof of knowledge of a solution of the semigroup
action discrete logarithm (sdl) problem. Then we create a digital signature
scheme which is based on one of these identification protocols.

Provided that the sdl problem is intractable, knowledge of an sdl solu-
tion is indeed nontrivial knowledge, i.e. it cannot be efficiently deduced from
public information. However, it appears that ZK proofs of knowledge of a
discrete logarithm in a group cannot be transferred to general semigroup
actions. Therefore, we will require more restricted settings.

Stated below is the general principle how to use ZK proofs of knowledge
of an sdl solution inside an identification protocol.

Cryptosystem 2.3.11. Let (A,X) be a family of semigroup actions with
instance generator IG (satisfying the sdl assumption), and let π be a ZK
proof of knowledge of an sdl solution. The semigroup action ZK-based
identification protocol is the following:
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• During setup phase a semigroup action instance (i, g) is selected and
published by applying IG(1k), where k is the security parameter. Each
claimant P chooses a private key a ∈ Ai and publishes h = a . g as its
public key.

• P identifies itself to a verifier V by proving knowledge of its private
key a using the ZK proof π.

We present two zero-knowledge proofs of knowledge of a solution to the
sdl problem. The first is analogous to the Fiat-Shamir protocol [FS87] and
was suggested in the context of braid groups [SDG02, Deh04]. We state
the protocol for general semigroup actions, but prove its properties only for
group actions.

Protocol 2.3.12. Let (A,X) be a family of semitransitive semigroup
actions and let R be the sdl function problem consisting of all pairs
((i, g, a . g), a), where (i, g) is a semigroup action instance and a ∈ Ai. A
prover P demonstrates to a verifier V knowledge of a solution a ∈ R(x)
to the sdl problem instance x = (i, g, h), i.e. h = a . g, by executing the
following subprotocol k = |x| times.

(Commitment) P sends r = b . h ∈ Xi, where b ∈ Ai is chosen uniformly at
random3,

(Challenge) V sends a bit c ∈ {0, 1}, chosen uniformly at random,

(Response) P sends ℓ =

{

b if c = 0 ,

b a if c = 1 .

At the end the verifier V accepts if and only if each time it holds
r = ℓ . h in the case c = 0 and r = ℓ . g in the case c = 1.

The following proposition requires group actions. It is an open problem
to examine weaker conditions under which the properties of a ZK proof of
knowledge are preserved.

Proposition 2.3.13. If Ai is a group then Protocol 2.3.12 is a zero-
knowledge proof of knowledge of an sdl solution.

Proof. Let x = (i, g, h) be an sdl problem instance. If a ∈ R(x) is a solution,
i.e. h = a . g, then r = b . h = b a . g, and hence P’s answers will be correct
for both c = 0 and c = 1. Thus the protocol is complete.

For the soundness condition, let B be an algorithm impersonating the
prover interacting with V. For each of the k = |x| rounds the message-
specification function of B specifies triples (r, ℓ0, ℓ1), where r ∈ Xi is a
commitment and ℓ0, ℓ1 ∈ Ai are the answers to the challenges c = 0, 1.

3We assume here that uniform random drawing from Ai can be done efficiently.
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These triples may depend on the challenges in previous rounds. Let us call
a triple correct if V would accept both answers, i.e. it holds

ℓ0 . h = r = ℓ1 . g .

In this case, since l0 is left invertible, it follows ℓ−1
0 ℓ1 . g = ℓ−1

0 ℓ0 . h = h,
hence ℓ−1

0 ℓ1 ∈ R(x) is a valid solution. Now the knowledge extractor K
examines the triples of B and outputs the solution if it finds a correct triple.
If however the answers in the triple are correct for only one challenge c, then
K lets B’s future triples depend on this challenge c. Let p be the probability
that V accepts and let s be K’s success probability; we will show s ≥ p− 1

2k .
By averaging it suffices to consider an execution of B with its internal coin
tosses fixed. Now if K examines no correct triple of B then there is at most
one sequence of challenges letting V accept, i.e. p ≤ 1

2k ; in the other case

s = 1. Hence we have s ≥ p− 1
2k in any case.

For the zero-knowledge property note that the transcripts of the protocol
are (b . h, 0, b) if c = 0 and (b . h, 1, b a) = (b a . g, 1, b a) if c = 1. Since b a
is uniformly distributed on Ai as b is, it is clear that one can efficiently
generate, without interaction, an output which is indistinguishable from a
protocol transcript.

The second ZK proof of knowledge of an sdl solution is derived from the
Schnorr identification protocol, Cryptosystem 1.5.21. We state the protocol
for general semimodules over a semiring, but prove its properties only for
particular modules over a ring.

Protocol 2.3.14. Let (A,X) be a family of monogenic semimodules Xi

over semirings Ai and let R be the sdl function problem consisting of all
pairs ((i, g, a . g), a), where (i, g) is a semimodule instance and a ∈ Ai. A
prover P demonstrates to a verifier V knowledge of a solution a ∈ R(x) to
the problem instance x = (i, g, h), i.e. h = a . g, by executing the following
protocol.

(Commitment) P chooses randomly b ∈ Ai and sends r = b . g ∈ Xi,

(Challenge) V sends a random c ∈ Ai,

(Response) P sends s = b+ c a ∈ Ai.

The verifier V accepts if and only if s . g = r + c . h.

The choice of b and c is according to the uniform distribution on Ai.

Proposition 2.3.15. Let Xi be modules over rings Ai having a negligible
fraction of nonunits. Then Protocol 2.3.14 is a zero-knowledge proof of
knowledge of an sdl solution.
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Proof. Let x = (i, g, h) be an sdl problem instance. If a ∈ R(x) is a solution,
i.e. h = a . g, then r+ c . h = (b+ c a) . g, and hence V will accept the proof.
Thus the protocol is complete.

Now suppose B is an algorithm impersonating the prover interacting with
V, and let p be the probability that V accepts. The knowledge extractor
K having oracle access to B’s message-specification function obtains B’s
commitment r, chooses two different random challenges c0, c1 ∈ Zn and
obtains B’s answers s0, s1. If V would accept both answers we have si . g =
r + ci . h for i = 0, 1, and consequently (s1 − s0) . g = (c1 − c0) . h. With
overwhelming probability c1 − c0 will be left-invertible, and in this case we
have

(c1 − c0)
−1 (s1 − s0) . g = (c1 − c0)

−1 (c1 − c0) . h = h ,

hence (c1 − c0)
−1 (s1 − s0) ∈ R(x) is a valid solution. For K’s success

probability we have s ≥ p2 − ε(x), where ε(x) is a negligible function in |x|.
This shows the soundness property.

For the zero-knowledge property note that the transcript (b . g, c, b+ c a)
of the protocol is identically distributed as (s . g − c . h, c, s), where s ∈ A is
uniformly distributed. Hence one can efficiently generate, without interact-
ing with P, transcripts indistinguishable from the original ones.

As the Schnorr signature scheme is deduced from the Schnorr identifica-
tion protocol by replacing the challenge by the value of a hash function, we
can deduce a signature scheme from the above ZK proof of knowledge.

Cryptosystem 2.3.16. Let (A,X) be a family of monogenic Ai-modulesXi

such that the rings Ai have negligible fractions of nonunits, and let IG
be an instance generator. Let H = {Hi} be a family of hash functions
Hi : {0, 1}∗ → Ai. The semigroup action Schnorr signature scheme
for G is the following probabilistic digital signature scheme.

• The key generator K(1k) uses the instance generator IG as a subrou-
tine and outputs the key pair ((i, g, h), a). Here, (i, g) is a module
instance distributed as IG(1k), a is uniformly distributed on Ai, and
h = a . g.

The public key is e = (i, g, h), the private key is d = a.

• The signature of a message m is

Sa(m) = (c, s) = (Hi(m, r), b+ a c) ∈ A2
i ,

where b is a random element distributed uniformly on Ai, and r = b . g.

• The verification of a signature (c, s) for a message m is

V(i,g,h)(m, (c, s)) = yes if and only if Hi(m, s . g − c . h) = c .
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Remark 2.3.17. Since the semigroup action Schnorr signature scheme is
based on a ZK proof of knowledge its security can be proved exactly as
in [PS00]. Precisely, provided that the module family (A,X) satisfies the
sdl assumption, the signature scheme is existentially unforgeable under an
adaptive chosen-message attack.

2.4 Semigroup action based cryptosystems in the

literature

In this section we give an overview of some cryptosystems proposed in the
last decade that use (semi-)group actions. A frequently used concept is the
conjugation in certain nonabelian groups.

2.4.1 Cryptosystems using the modular group

The modular group is a fundamental object of study in number theory, ge-
ometry and algebra. It was used by Yamamura [Yam98, Yam99] to construct
public-key encryption schemes. Although both proposed cryptosystems have
been very successfully attacked by Blackburn and Galbraith [BG99], they
are still worth mentioning because they seem to be the first cryptosystems
using several group theory concepts, like presentations, group actions and
conjugated elements, which are used in subsequent proposals of group-based
cryptosystems.

The Yamamura encryption schemes use an action of the modular group
SL2(Z) on the upper halfplane by Möbius transformations:

Example 2.4.1. Every element

M ∈
(

a b
c d

)

∈ GL2(C)

in the general linear group defines a Möbius transformation

fM : z 7→ az + b

cz + d

of the extended complex plane Ĉ = C ∪ {∞}, and the corresponding map
GL2(C) → Aut(Ĉ), M 7→ fM is a group homomorphism. Hence there is a
group action of GL2(C) on Ĉ, given by

M . z := fM (z) .

The modular group G is the subgroup SL2(Z) of GL2(C) consisting
of matrices over Z with determinant 1. Let H be the upper halfplane



50 2. Cryptosystems based on semigroup actions

{z ∈ C | Im z > 0}. The Möbius transformations associated to matrices in
G preserve H, so that G acts on H.4

The set F := {z ∈ H | |z| ≥ 1, |Re z| ≤ 1
2} is called the standard

fundamental domain. It intersects every orbit in at least one point, and in
at most one point in the interior.

Another representation of the modular group is the presentation

G = 〈A,B | A4 = I = B6, A2 = B3(= −I)〉 ,

where

A =

(

0 −1
1 0

)

and B =

(

0 −1
1 1

)

.

We can thus characterize the modular group more abstractly as

G ∼= (Z2 ∗ Z3) × Z2 ,

where ∗ denotes the free product and × the cartesian product. It follows
that every matrix M ∈ SL2(Z) can be uniquely written as

M = ±AεBi1A . . . ABinAε′

with ε, ε′ ∈ {0, 1} and i1, . . . , in ∈ {1, 2}, called the normal form of M .
A crucial fact for cryptographic purposes is that the action of the modu-

lar group on H gives rise to an efficient algorithm for computing the normal
form of a matrix M ∈ SL2(Z). Indeed, there is an algorithm which for a
given point M .p, where p is any point in the interior of the fundamental
domain F (say p = 2i), computes the normal form of M up to sign. It needs
linear time in the length of the normal form, see e.g. [BG99] for details. Note
that this means that the semigroup action discrete logarithm (sdl) problem
for the modular group action is easily solvable.

Now we present the idea of the encryption scheme in [Yam99]. Let
V1, V2 ∈ SL2(Z) be matrices that generate a free subgroup of SL2(Z) and
such that any word in V1, V2 is in normal form. For example, V1 = (AB)i,
V2 = (AB2)j is a valid choice for any i, j ≥ 1. Let p be a point in the interior
of the fundamental domain F , and choose a secret matrix M ∈ GL2(C) as
the private key. The public key consists of the point q = M−1 . p and the
conjugated matrices W1 = M−1V1M and W2 = M−1V2M . A message
m = (i1, . . . , in) ∈ {1, 2}n is then encrypted to

q′ = Wi1 . . .Win . q .

To decrypt a message note that M . q′ = Vi1 . . . Vin . p, so that i1, . . . , in can
be recovered by applying the algorithm for computing the normal form.

4The kernel of the corresponding homomorphism SL2(Z) → Aut(H) equals {I,−I},
so the induced map PSL2(Z) →֒ Aut(H) is injective, where PSL2(Z) := SL2(Z)/{I,−I}.
Some authors refer to PSL2(Z) instead of SL2(Z) as the modular group.
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However, as Blackburn and Galbraith show [BG99, Proposition 1], the
ciphertext q′ lies in easily distinguishable regions, depending on the first bit
i1, so that the plaintext can be easily recovered by a bit-by-bit computation.

The encryption scheme in [Yam98] is based on a similar idea, but uses
matrices over the polynomial ring C[x]. The transformed generators are
Wi(x) = M−1Fi(x)M , where Fi(a) = Vi for some secret a ∈ C. However, its
cryptanalysis can be reduced to the cryptanalysis of the point-based scheme
above, see [BG99].

2.4.2 Braid groups and cryptography

Problems in combinatorial group theory

Combinatorial group theory deals with groups presented by generators and
relations. The idea to use them for public-key cryptography originates
from the fact that many problems arising in the context of recursively pre-
sented groups are computationally very hard in general. The recent text-
book [MSU08] gives a good introduction to group-based cryptography.

One of the computationally hard problems in group theory is the word
problem, which is the problem to decide whether two given words in the
generators represent the same group element. A remarkable result, proved
independently by Novikov and Boone in the 1950s, states the existence of
a finitely presented group with unsolvable word problem. See Rotman’s
book [Rot73] for an elementary proof of the Novikov-Boone theorem.

Another hard problem is the conjugacy problem, which asks whether two
given words in the generators represent the same conjugacy class. Also in
this case, there exist finitely presented groups with unsolvable conjugacy
problem. The related conjugator search problem is the problem to find for
two given words x, y representing the same conjugacy class a word a such
that y = a x a−1 holds in the group.5

Cryptographers have been utilizing the hardness of the conjugacy search
problem for constructing public-key cryptosystems. We note that the con-
jugacy search problem is a special case of the semigroup action discrete
logarithm (sdl) problem when the group action is taken to be the conjuga-
tion, see Example 2.1.6, (3). As a word of warning we note that the hardness
discussion of problems usually refer to worst-case hardness. As noted in Sec-
tion 1.4 this is not sufficient for cryptographic purposes unless there is also
an efficient method to generate hard instances.

5We note that the conjugacy search problem is always solvable, essentially by trying
each possible conjugator a. The corresponding conjugacy problem being unsolvable now
means that the sought-after conjugator a may become “extremely complex”, namely its
word length is not bounded by a recursive function. However, for the design of secure
cryptosystems this property seems not applicable, since usually the conjugator is part of
the secret key and thus has to be of moderate size.
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Though the conjugacy search problem should be hard for a group-based
cryptosystem one requires the word problem to be efficiently solvable. This
is because secret keys and ciphertexts are usually encoded as group elements.
In most of the cases, this issue is handled by a unique normal form together
with an efficient algorithm to convert words into their normal forms.

Braid groups

In braid groups the word problem is efficiently solvable yet the conjugator
search problem is computationally hard, so they seem to be well suited
for public-key cryptography. Braid groups have been appearing in the
cryptography literature from the pioneering work of Anshel, Anshel, Gold-
feld [AAG99] and Ko et al. [KLC+00] onwards. Nowadays “braid-based
cryptography” remains an active area of research, see Dehornoy’s article
[Deh04] for a survey.

For an integer n ≥ 2, the braid group Bn on n strands is defined by the
finite presentation

Bn := 〈σ1, . . . , σn−1 | σiσj = σjσi if |i− j| ≥ 2
σiσjσi = σjσiσj if |i− j| = 1

〉.

Hence for example, B2
∼= Z, B3 = 〈x, y | xyx = yxy〉 and B4 = 〈x, y, z |

xz = zx, xyx = yxy, yzy = zyz〉.
Note that we have natural inclusions B2 →֒ B3 →֒ B4 →֒ · · · and epi-

morphisms πn : Bn → Sn onto the symmetric group, given by σi 7→ (i, i+1).

Braid groups admit a normal form for elements, called the greedy normal
form. For this, define the positive braids to be the submonoid B+

n of Bn

generated by σ1, . . . , σn−1. Then, define ∆n ∈ B+
n inductively by ∆1 = 1 and

∆k+1 = ∆kσk . . . σ1. We call a braid b ∈ B+
n simple, if it is a (generalized)

prefix of ∆n, i.e. there exists c ∈ B+
n such that ∆n = bc holds in Bn. One

can show that the simple braids correspond bijectively to Sn via πn. For
example, ∆3 = xyx and the simple braids of B3 are ε, x, y, xy, yx, xyx.

Now the greedy normal form of an element b ∈ Bn is

b = ∆k
nb1 · · · br

where k ∈ Z and b1, . . . , br are simple braids 6= 1,∆n such that bi is a
maximal simple prefix of bi . . . br. The number r is called the complexity of
the braid b.

The normal form of a word w can be determined in quadratic time,
hence the word problem in braid groups can be solved efficiently. On the
other hand, though the conjugator search problem is also solvable, the only
solutions proposed so far have a high algorithmic complexity.
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Cryptosystems using braid groups

The hardness of the conjugator search problem was used by Ko et al.
[KLC+00] to set up a key agreement protocol. It is in fact a special case of
Cryptosystem 2.3.6, where the semigroup action is taken to be the conju-
gation in a braid group B2n, and the commuting output ranges of the key
generators are CA = 〈σ1, . . . , σn−1〉 and CB = 〈σn+1, . . . , σ2n−1〉.

The authors also propose an encryption scheme, which is derived from
the key agreement protocol. It is very similar to Cryptosystem 2.3.8, but
they use a hash function to transform the key, which is a braid group element,
into a binary string of the message space.

Anshel, Anshel and Goldfeld [AAG99] also proposed a key agreement
protocol based on the conjugator search problem in braid groups. More pre-
cisely, its security is based on the difficulty of the multiple conjugator search
problem, which asks when given multiple pairs (xi, yi) with yi = axia

−1 for
the common conjugator a. The idea of this key agreement protocol is the
following: Two parties, A and B, want to agree on a key k ∈ Bn, which will
be composed of their secret keys r, s ∈ Bn as

k = (srs−1)r−1 = s(rsr−1)−1 .

Hence, B has to send A some information involving s so that it can com-
pute srs−1, but an eavesdropper should not reconstruct B’s secret s. For
this, A publishes braids p1, . . . , pℓ and B publishes braids q1, . . . , qm. Then
A chooses a word u on the letters pi and their inverses, and B chooses a
word v on the letters qi and their inverses. Their secrets r and s will be
the braids determined by the words u and v, respectively. Now B sends
sp1s

−1, . . . , spℓs
−1 to A, so that it can compute srs−1 by replacing each pi

in the word u by spis
−1. Similarly, A sends rq1r

−1, . . . , rq−1
m r−1 from which

B can compute rsr−1.

There are also schemes for identification and digital signature based on
braid groups, see [Deh04].

However, the initial enthusiasm for cryptography based on braid groups
was lowered due to several attacks. Many of these attacks use the complexity
or the length of braid words to solve the conjugator search problem. There
are exact algorithms as in [Geb06] as well as heuristic algorithms as in
[HS02, MSU05]. These attacks turn out to be effective when random braid
group elements are used, but one might be able to select hard instances of
the conjugator search problem which withstand the proposed attacks.

2.4.3 MOR cryptosystem

Paeng et al. [PHK+01] used conjugation in nonabelian groups to construct
a public-key encryption scheme based on the difficulty of the discrete loga-
rithm (DL) problem in the group of inner automorphisms. They argue that
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even if the DL problem in the original group is subject to subexponential
attacks, the DL problem in the inner automorphism group appears to be
more difficult.

This MOR cryptosystem (as it was called in a follow-up paper
[PKHK01]) is similar to ElGamal encryption, see Cryptosystem 1.5.18. Its
idea is the following: Let G = 〈γ1, . . . , γn〉 be a group with an efficient com-
putable normal form to express group elements as products in the generators
γi. Then, an inner automorphism

Inng : G→ G, x 7→ gxg−1

is uniquely determined by the values Inng(γi) and can thus be represented
by the n-tuple (Inng(γi))

n
i=1. Let a be a random integer. The public key

consists of Inng and (Inng)
a = Innga , and the private key is the integer a. To

encrypt a message m ∈ G, a random integer r is chosen and the ciphertext

(c, ϕ) = ((Inng)
ar(m), (Inng)

r)

is sent. With the knowledge of a the decryption can be done as ϕ−a(c) = m.
A relevant problem for the security analysis is the special conjugacy

problem, which for a given Inng asks for an element g′ ∈ G such that
Inng′ = Inng.

6 Note that a solution g′ is unique up the center Z(G) of G. It
follows that if the special conjugacy problem is efficiently solvable, the DL
problem in InnG can be reduced to the DL problem in the quotient group
G/Z(G). For this reason the authors suggested to use groups with large
center to prevent a reduction to the DL problem in G.

As a platform groupG Paeng et al. proposed to use the subdirect product
SL2(Zp) ×θ Zp, where the homomorphism θ is given by

θ : Zp → Aut(SL2(Zp)), a 7→ (Innα)a with α ∈ SL2(Zp) of order p.

The MOR cryptosystem was analyzed by Tobias [Tob02], who found
several weaknesses of the original system. He showed, for example, that
breaking MOR using G is not harder than breaking MOR using SL2(Zp),
and pointed out that the invariance of the trace under matrix conjugation
enables one to reveal partial information of the message.

2.4.4 Further problems in other groups

The decomposition problem

Besides the conjugator search problem there are other problems with some
relevance for cryptology. One of these is named decomposition problem by
several authors. It is stated as follows: Let G be a group and let CA, CB

6This is in fact equivalent to the multiple conjugator search problem, since Inng is
given by Inng(γi) = gγig

−1.
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be subgroups. For given elements x, y ∈ G, where y ∈ CA · x · CB, find
elements a ∈ CA and b ∈ CB such that y = a ·x · b. Thus it is the semigroup
action discrete logarithm (sdl) problem in a two-sided group action, see
Example 2.2.16 and Remark 2.2.17 (1).

Myasnikov, Shpilrain and Ushakov [MSU05] developed a length-based
algorithm to solve a decomposition problem in braid groups and used it for
cryptanalysis of the key agreement protocol by Ko et. al. [KLC+00].

At the same time, Shpilrain and Ushakov [SU06] used the decomposi-
tion problem as a base for a new key agreement protocol.7 As a platform
they proposed to use Thompson’s group F , or, more precisely, its (infinite)
presentation

F = 〈x0, x1, x2, . . . | x−1
i xkxi = xk+1 for k > i 〉 .

They show how a normal form of a word w can be computed in almost linear
time in the length of w.

Their key agreement protocol is a special case of Cryptosystem 2.3.6,
where the semigroup action is the two-sided action in Thompson’s group.
The commuting output ranges of the key generators are CA = A × B and
CB = B ×A, where A,B are commuting subgroups of F , given by

A = 〈x0x
−1
1 , . . . , x0x

−1
s 〉 and B = 〈xs+1, xs+2, . . . 〉

for some s.

However, Thompson’s group is vulnerable e.g. to length-based attacks,
as pointed out by Ruinskiy, Shamir and Tsaban [RST07], so that this cryp-
tosystem can be considered insecure.

Endomorphisms of Artin groups

Shpilrain and Zapata presented in [SZ06] a general idea for constructing
key agreement protocols based on semigroup actions. To explain the idea,
consider first the action of a group G on itself, given by conjugation

(a, x) 7→ a · x · a−1 .

Its associated map a 7→ [x 7→ a x a−1] is a group epimorphism G → Inn(G)
onto the group of inner automorphisms of G.

Instead of inner automorphisms Shpilrain and Zapata considered more
general endomorphisms of G. More precisely, they considered a homomor-
phism T → End(G) from a semigroup T into the endomorphism monoid
End(G), and proposed a key agreement protocol like Cryptosystem 2.3.6
using the corresponding semigroup action T ×G→ G.

7A related idea was developed by Maze [Maz03, Section 5.4], see also [MMR07].
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As for the group G they proposed Artin groups of extra large type. An
Artin group is given by a presentation of the form

G = 〈a1, . . . , an | µij = µji for i < j〉,

where the µij = xixjxi . . . are alternating products of xi and xj of length
mij , beginning with xi. Furthermore, mji = mij ∈ {2, 3, . . . ,∞}, with the
convention that there is no relation for xi and xj in the case mij = ∞. The
braid groups Bn are examples of Artin groups, with the mij taken to be
mij = 2 if |i− j| ≥ 2 and mij = 3 if |i− j| = 1. We call the Artin group to
be of extra large type if mij ≥ 4 for all (i, j). As can be shown these admit
an efficient algorithm to solve the word problem.

Artin groups can be described by a weighted graph Γ having vertices
{a1, . . . , an} and edges (ai, aj) with weight mij for all i < j with mij < ∞.
Conversely, for every weighted graph Γ with edge values in N≥2 there is an
associated Artin group AΓ. Furthermore, every graph endomorphism of Γ
induces a group endomorphism of AΓ.

This gives a way to construct commuting endomorphisms as needed for
the key generators of Cryptosystem 2.3.6. More precisely, let Γ be a rooted
tree such that the root has 2 branches and the edges have weights ≥ 4.
Hence, AΓ is an Artin group of extra large type. Let ΓA,ΓB be the subtrees
obtained by removing the root and letAΓA, AΓB be the associated subgroups
of AΓ. We let T be End(AΓA)×End(AΓB). The subsets CA = End(AΓA)×
{id} and CB = {id} × End(AΓB) will then commute, and thus can be used
for constructing key generators KA and KB of the key agreement protocol.

However, Shpilrain and Zapata stay rather general when describing their
cryptosystem. They do not give details on how to choose the tree Γ and
how to select endomorphisms out of the sets CA, CB.



Chapter 3

Simple semirings

The main result of this chapter states that a finite semiring of order > 2
with zero which is not a ring is congruence-simple if and only if it is iso-
morphic to a “dense” subsemiring of the endomorphism semiring of a finite
idempotent commutative monoid. We also investigate those subsemirings
further, considering e.g. the question of isomorphism.

Whereas Section 3.2 and Section 3.3 deal only with semirings having a
zero element, the first section introduces them more generally.

3.1 Introduction to semirings

The notion of semiring is a natural generalization of the notion of ring, allow-
ing the additive substructure to be only a commutative semigroup instead
of an abelian group. Since their introduction by Vandiver in 1934 [Van34],
there has been an active area of research in semirings. The interest in semi-
ring theory evolved not only because it provides a natural generalization
of ring theory, but because of its value as a tool in many significant ap-
plications in mathematics, computer science, and other fields. One reason
for this is that semirings provide in a sense the weakest algebraic frame-
work so that matrix multiplication over them is associative, see Proposi-
tion 4.1.9. The reader may consult the monographs of Golan [Gol99] and
Hebisch/Weinert [HW93, HW98] for more detailed information on semirings.

Definition 3.1.1. A structure R = (R,+, ·), consisting of a set R and two
binary operations + and · on R, is called a semiring if

• (R,+) is a commutative semigroup,

• (R, ·) is a semigroup,

• both distributive laws hold:

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z .
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If the commutative semigroup (R,+) is an abelian group, the semiring R is
called a ring. Otherwise, the semiring is called a proper semiring.

A subsemiring of a semiring R is a subset S ⊆ R that is closed under
addition and multiplication. Naturally, S itself is a semiring. The order of
a semiring R is its number of elements.

As usual we sometimes omit the multiplication dot, i.e. x y := x · y.

Definition 3.1.2. Let (R,+, ·) be a semiring.

• If a neutral element 0 of the semigroup (R,+) exists and it satisfies
0x = x 0 = 0 for all x ∈ R, then it is called zero.

• If a neutral element 1 of the semigroup (R, ·) exists, it is called a one .

Example 3.1.3. Let R be the set {o,b, c} with the following operations:

+ o b c

o o b c
b b b c
c c c c

· o b c

o o o c
b o b c
c o c c

It can be shown that (R,+, ·) satisfies the axioms for a semiring. We note
that the element o is neutral in the semigroup (R,+), but does not satisfy
o c = o. The element b is neutral in the semigroup (R, ·). Hence R is a
semiring with a one, but without a zero.

The number of finite semirings is enormous. The following table1 com-
pares the number of semirings having a zero with the number of rings.

Order Semirings with 0 Rings

2 4 2
3 22 2
4 283 11
5 4’717 2
6 108’992 4
7 8’925’672 2

total 9’039’691 23

Definition 3.1.4. Let R be a semiring. We define R∗ = R \ {o}, if R has
an additive neutral o, and R∗ = R otherwise. The semiring R is called
semifield if (R∗, ·) is a group.

See [HW98, Corollary 5.9] for a proof of the following result.

1These figures are outputs of a self-written Java program.
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Proposition 3.1.5. Every finite semifield is a field or has order ≤ 2.

Example 3.1.6. The Boolean semifield R is the set {0, 1} with the following
operations:

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

It is the only proper finite semifield with zero.

3.1.1 Homomorphisms, congruences, ideals

Definition 3.1.7. Let R and S be semirings. A map f : R→ S is called a
homomorphism of semirings if it preserves the semiring operations:

f(x+ y) = f(x) + f(y) , f(x · y) = f(x) · f(y) .

If R and S have a zero, a homomorphism of semirings f is called a homo-
morphism of semirings with zero if it preserves also the zero element:

f(0) = 0 .

Recall that, by the fact known as the first isomorphism theorem for rings,
every homomorphism f : R→ S of rings R and S induces an isomorphism

f̂ : R/ ker f → im f , [x] 7→ f(x)

of the quotient ring R/ ker f of R onto the subring im f of S.

The situation is different for general semirings. Consider, for example,
a homomorphism f : R → S of semirings with zero. The set of equivalence
classes [x] := f−1(f(x)) can in general not be described by the “kernel”
f−1(0) of f . Instead, the equivalence relations induced by semiring homo-
morphisms are described by congruences.

Definition 3.1.8. Let R be a semiring. An equivalence relation ∼ on R is
called (semiring) congruence if it respects the semiring operations:

x ∼ y implies a+ x ∼ a+ y, a x ∼ a y, x a ∼ y a .

We note that every semiring R has at least two congruences, namely

• the equality relation ∼= idR, defined by x ∼ y ⇔ x = y,

• the total relation ∼= R×R, where x ∼ y for all x, y.

Remark 3.1.9. Semiring congruences are related to semiring homomorphisms
in the following way.
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(1) For every homomorphism f : R → S of semirings R and S, the equiva-
lence relation ∼f induced by f with classes [x] = f−1(f(x)), i.e.

x ∼f y :⇔ f(x) = f(y) ,

is a congruence.

(2) Given a congruence ∼ on a semiring R, we can define operations + and ·
on its set of equivalence classes R/∼ = {[x] | x ∈ R} by

[x] + [y] := [x+ y] and [x] · [y] := [x · y] ,

turning (R/∼ ,+, ·) into a semiring, called the quotient semiring. The
natural map π : R → R/∼ is an epimorphism of semirings, and its
induced equivalence relation ∼π equals the original congruence ∼ .

(3) The first isomorphism theorem for semirings can be stated as follows.
Every homomorphism f : R → S of semirings R and S induces an
isomorphism

f̂ : R/∼f → im f , [x] 7→ f(x)

of the quotient semiring R/∼f of R onto the subsemiring im f of S.

(4) If R is a ring, there is a natural bijection between the semiring congru-
ences on R and the ring-ideals of R, where a congruence ∼ is mapped
to the ideal being the 0-class [0].

The notion of an ideal in a ring can be generalized to semirings.

Definition 3.1.10. Let R be a semiring. A nonempty subset A ⊆ R is
called

ideal if A+A ⊆ A, and RA ⊆ A, AR ⊆ A;

bi-ideal if A is an ideal, and R+A ⊆ A;

k-ideal if A is an ideal, and A+Ac ⊆ Ac.

Here, Ac denotes the complement R \A. The condition A+Ac ⊆ Ac means
that for all x ∈ R and a ∈ A with a+ x ∈ A we have x ∈ A.

An ideal A of R is called proper if A 6= R.

We warn that if R is a ring, a semiring-ideal A as in the definition above
is not necessarily a ring-ideal, because A is only a submonoid rather than
a subgroup of (R,+). However, if the ring R is finite or has a one, every
semiring-ideal is also a ring-ideal. In general rings, the ring-ideals are the
same as semiring-k-ideals.
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Lemma 3.1.11. Let R be a semiring. For any ideal A, there is a congruence
relation on R defined by

x ∼ y :⇔ ∃ a, b ∈ A : x+ a = y + b .

If A is a k-ideal and o is a neutral element of (R,+), then the ∼-class [o]
equals A.

Proof. Clearly, ∼ is reflexive and symmetric. Now if we have x, y, z ∈ R
with x ∼ y and y ∼ z, there exists a, b, c, d ∈ A such that x+ a = y + b and
y + c = z + d. It follows that

x+ a+ c = y + b+ c = z + b+ d and a+ c , b+ d ∈ A ,

hence x ∼ z, and so ∼ is also transitive.
Furthermore, for every u ∈ R, we have u+ x+ a = u+ y + b and hence

u+ x ∼ u+ y. Also, we have

ux+ u a = u y + u b and u a , u b ∈ A ,

so that ux ∼ u y, and similarly we have xu ∼ y u. It follows that ∼ is a
congruence relation.

Now let o be a neutral element of (R,+), and let x ∈ R. Then x ∼ o if
and only if there exist a, b ∈ A such that x+ a = b. If A is a k-ideal this is
equivalent to x ∈ A.

3.1.2 Semimodules over semirings

Let R be a semiring with zero.

Definition 3.1.12. A (left) semimodule M over R is a commuta-
tive monoid (M,+) with neutral element 0 ∈ M , together with an R-
multiplication

R×M →M , (r, x) 7→ r · x = r x ,

such that, for all r, s ∈ R and x, y ∈M , we have

r (s x) = (r s)x , 0x = 0 , r 0 = 0 ,

(r + s)x = r x+ s x , r(x+ y) = r x+ r y .

Remark 3.1.13. If (M,+) is a commutative monoid, any representation i.e.
semiring homomorphism

T : R→ End(M), r 7→ Tr

turns M into a semimodule by defining r x := Tr(x), for x ∈ R and x ∈M .
On the other hand, letM be any semimodule over R. For r ∈ R, the map

x 7→ r x defines an endomorphism Tr of M , and the map T : R→ End(M),
r 7→ Tr is a representation.
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Definition 3.1.14. Let M be a semimodule over R.

• A subsemimodule N ⊆M is a submonoid of (M,+) with RN ⊆ N .

• An equivalence relation ∼ on M is called (semimodule) congruence if

x ∼ y implies a+ x ∼ a+ y, r x ∼ r y ,

for all x, y, a ∈M and r ∈ R.

Remark 3.1.15. Note that any subsemimodule N ⊆M itself is a semimodule
over R. Also, given a congruence ∼ on M , we can define an addition and
an R-multiplication on its set of equivalence classes M /∼ = {[x] | x ∈ M}
by

[x] + [y] := [x+ y] and r [x] := [r x]

turning M /∼ into a semimodule over R, called the quotient semimodule.

As in the case of semirings, semimodule congruences are related to semi-
module homomorphisms. We will discuss this connection in more detail and
give notions of irreducibility for semimodules in Section 3.2.3.

3.1.3 Simple semirings

There are multiple notions of simplicity for semirings. For example
one might consider semirings which have only the trivial ideals. There
was a development of an “ideal-based” structure-theory, including con-
cepts like semiring Jacobson radical and irreducible semimodules, but
the main results applied only to rather special classes of semirings (see
e. g. [Bou51, BZ57, Iiz59]). Moreover, these ideal-simple semirings lack an
important property one wishes to attribute to “simple” objects S: namely
that every nontrivial homomorphism from S should be injective, so that
smaller (and thus “simpler”) homomorphic images do not exist. This prop-
erty is captured by the following definition.

Definition 3.1.16. A semiring R is called (congruence-)simple if its only
congruences are the trivial ones, namely ∼ = idR and ∼ = R×R.

Remark 3.1.17. A semiring R is simple if and only if any nonconstant ho-
momorphism f : R → S into a semiring S is injective, see Remark 3.1.9.
Hence, a ring is simple if and only if it is simple in the sense that there are
only trivial ideals.

By this remark, finite simple semirings have indeed no smaller homo-
morphic images. It is exactly this property that makes them interesting for
cryptographic purposes.

Simple semirings restrict the number of bi-ideals and k-ideals:
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Proposition 3.1.18. Let R be a simple semiring.

(a) Any proper bi-ideal in R has exactly one element.

(b) Let o be a neutral element in (R,+). Then any proper k-ideal has exactly
one element, namely o.

Proof. If A is a bi-ideal, it is easy to see that ∼= idR ∪ (A×A), i.e.

x ∼ y :⇔ x = y or x, y ∈ A ,

defines a congruence. So if R is simple and if A is proper we must have
∼= idR and hence |A| = 1.

Now let R contain an additive neutral o and let A be a k-ideal. By
Lemma 3.1.11 there exists a congruence ∼ on R such that its class [o]
equals A. If A is proper we must have ∼= idR and therefore A = {o}.

Nevertheless, we note that a simple semiring may have proper non-
singleton ideals: the semiring of Example 3.1.3 is simple, yet {o,b} is an
ideal. Conversely, there exist semirings with no proper ideals, but having
many congruences, as the following example shows:

Example 3.1.19. Let (R,≤) be a totally ordered set and define operations
+ and · on R by

x+ y = max(x, y) , x · y = y .

It can be shown that (R,+, ·) is a semiring that has no proper ideals. On
the other hand, every equivalence relation ∼ which respects the order, i.e.
x ≤ y ≤ z and x ∼ z implies x ∼ y ∼ z, is a congruence relation.

3.2 Classification of finite simple semirings with

zero

The study of (congruence-)simple semirings started around two decades
ago (see e. g. [MF88]). But it was not until 2001, when El Bashir et
al. achieved a classification of (multiplicatively) commutative congruence-
simple semirings [EHJK01]. Later, Monico progressed on the classification
of finite congruence-simple semirings [Mon04]; his main result states that
congruence-simple semirings of size > 2 are either rings, have trivial addi-
tion (|R + R| = 1) or have idempotent addition. At that time, very few
examples of congruence-simple semirings with zero of the latter case were
known, namely the square matrices over either the Boolean semiring or over
a 6-element semiring found by computer search, hence this case was open
as the main task of further research.

In this section we state and prove a full classification of finite congruence-
simple semirings with zero, as it was published in [Zum08]. For this, we now
assume that every semiring has a zero, and that every semiring homomor-
phism preserves the zero element.
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3.2.1 Statement of the main theorem

Example 3.2.1. Let (M,+) be a commutative monoid. We call a map
f : M →M an endomorphism if it preserves the monoid operation and the
neutral element. On the set End(M) of all endomorphisms of M we get
operations + and ◦ by defining f + g as pointwise addition and and f ◦ g as
composition of maps, for f, g ∈ End(M).

It is straight-forward to verify that (End(M),+, ◦) is a semiring with a
one, which will be called endomorphism semiring.

The classification result uses subsemirings of some endomorphism semi-
rings, which are rich or lie dense in the sense that they contain at least
certain elementary endomorphisms.

Definition 3.2.2. Let M be an idempotent commutative monoid. A sub-
semiring S ⊆ End(M) is called dense if it contains for all a, b ∈ M the
endomorphism ea,b ∈ End(M), defined by

ea,b(x) :=

{

0 if x+ a = a

b otherwise
(x ∈M).

Now we can state the main result.

Theorem 3.2.3. Let R be a finite semiring with zero which is not a ring.
Then the following are equivalent:

(1) R is congruence-simple.

(2) |R| ≤ 2 or R is isomorphic to a dense subsemiring S ⊆ End(M), where
(M,+) is a finite idempotent commutative monoid.

We point out Proposition 3.3.2 below which implies that if two monoids
M1 and M2 are nonisomorphic then any dense subsemirings S1 ⊆ End(M1)
and S2 ⊆ End(M2) are nonisomorphic.

Note that the classification of finite simple rings is a classical subject in
algebra. By the Wedderburn–Artin theorem (see [Her68]), a finite ring R
with nontrivial multiplication is simple if and only if R is isomorphic to the
endomorphism ring Matn×n(F) of a finite-dimensional vector space F

n over
a finite field F.

Remark 3.2.4. There are two proper semirings of order 2, namely the semi-
rings R2,a, R2,b given by

R2,a :

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 0

R2,b :

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

.

R2,b is the Boolean semifield of Example 3.1.6, and can also be seen as
the endomorphism semiring End(L2) for (L2,+) = ({0, 1},max). Trivially,
R2,a and R2,b are simple.
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The smallest simple semiring with zero of order > 2 has already 6 el-
ements. It was probably first found by Monico in 2002 with the help of a
computer search program:

Example 3.2.5. Let R6 be the set {0, 1, a,b, c,d} with the following oper-
ations:

+ 0 a b c 1 d

0 0 a b c 1 d
a a a b c 1 d
b b b b 1 1 d
c c c 1 c 1 d
1 1 1 1 1 1 d
d d d d d d d

· 0 a b c 1 d

0 0 0 0 0 0 0
a 0 0 0 a a b
b 0 a b a b b
c 0 0 0 c c d
1 0 a b c 1 d
d 0 c d c d d

.

The semiring (R6,+, ·) is simple and can be identified as the endomorphism
semiring End(M) of the commutative monoid (M,+) = ({1, 2, 3},max).

The proof of the direction (2) ⇒ (1) of the main result is given in Sec-
tion 3.2.2, and the direction (1) ⇒ (2) will be proved in Section 3.2.3 with
the help of irreducible semimodules.

3.2.2 Endomorphism semirings

In this subsection we prove the direction (2) ⇒ (1) of Theorem 3.2.3. We be-
gin with a remark on idempotent commutative monoids and (semi-)lattices
(see e.g. [Bir67, Sections I.5 and II.2]).

A lattice is an ordered set (L,≤) in which every pair of elements has both
a supremum (or join) and an infimum (or meet) in L. Finite lattices can be
depicted by Hasse diagrams, which show only the covering pairs (y covers x
if and only if x < y and there is no z with x < z < y).

Example 3.2.6. Let L = P({0, 1}) = {∅, {0}, {1}, {0, 1}}, ordered by in-
clusion. The Hasse diagram of the corresponding lattice is depicted below.

ONMLHIJK{0, 1}

GFED�ABC{0}

zzzzzz

EE
EE

EE
E

GFED�ABC{1}

DDDDDD

yy
yy
yy
y

?>=<89:;∅

Remark 3.2.7. Let (L,≤) be a lattice. Its supremum operation converts the
lattice into a commutative idempotent semigroup, which is in the finite case
even a monoid.
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Conversely, let (M,+) be an idempotent commutative monoid. By defin-
ing

x ≤ y :⇔ x+ y = y

we get a partial order relation ≤ on M , where 0 ≤ x for any x ∈ M . Also,
for all x, y ∈ M there exists a supremum x ∨ y = x+ y, so that (M,∨) is a
join-semilattice. If in addition M is finite, for all x, y ∈ M there exists an
infimum x ∧ y =

∑

z≤x, z≤y z, so that (M,∨,∧) is even a lattice.

Though finite idempotent commutative monoids and finite lattices are
basically the same thing, we note that their homomorphisms slightly differ
from each other. If (M,+) is a finite idempotent commutative monoid,
viewed as a lattice, the elements f ∈ End(M) are maps f : M → M
satisfying f(0) = 0 and f(x∨y) = f(x)∨f(y) for all x, y ∈M . In particular,
f is order-preserving. But f(x ∧ y) = f(x) ∧ f(y) is not generally true, i.e.
f may not be a lattice endomorphism.

Now we state a lemma on the maps ea,b of Definition 3.2.2. Note that
by Remark 3.2.7 we have

ea,b(x) =

{

0 if x ≤ a

b otherwise .

Lemma 3.2.8. For a, b ∈ M , we have ea,b ∈ End(M). Also, for
f ∈ End(M) and a, b, c, d ∈M , we have f ◦ ea,b = ea,f(b) and

ec,d ◦ f ◦ ea,b =

{

0 if f(b) ≤ c,

ea,d otherwise.

If (M,+) has an absorbing element ∞ ∈M , i.e. x+∞ = ∞ for all x ∈M ,
then e0,∞ is absorbing for (End(M),+).

Proof. Note that for all x, y ∈ M , we have x ∨ y ≤ a if and only if x ≤ a
and y ≤ a. It follows that ea,b(x ∨ y) = 0 if and only if ea,b(x) = 0 and
ea,b(y) = 0, that is, if and only if ea,b(x)∨ ea,b(y) = 0. Thus ea,b ∈ End(M).

Now if f ∈ End(M) and a, b ∈ M one easily verifies f ◦ ea,b = ea,f(b).
Applying this formula twice yields

ec,d ◦ f ◦ ea,b = ec,d ◦ ea,f(b) = ea,ec,d(f(b)) =

{

0 if f(b) ≤ c,

ea,d otherwise.

Finally, for any h ∈ End(M) and x ∈ M \ {0} we have (h + e0,∞)(x) =
h(x) + ∞ = ∞, so that h+ e0,∞ = e0,∞.

Proposition 3.2.9. Let (M,+) be an idempotent commutative monoid with
an absorbing element. Then any dense subsemiring R ⊆ End(M) is simple.
In particular, End(M) itself is simple.
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Note that any finite idempotent commutative monoid M has an absorb-
ing element, namely ∞ :=

∑

x∈M x.

Proof. Let ∼ ⊆ R × R be a semiring congruence relation. Suppose that
∼ 6= idR, so that there exists f, g ∈ R with f 6= g, but f ∼ g. There is
b ∈ M with f(b) 6= g(b), and without loss of generality, we may assume
f(b) 6≤ c := g(b).

For all a, d ∈ M we have ea,b ∈ R and ec,d ∈ R. Hence, since ∼ is a
congruence, we have

ec,d ◦ f ◦ ea,b ∼ ec,d ◦ g ◦ ea,b,

so that ea,d ∼ 0, by Lemma 3.2.8.
In particular e0,∞ ∼ 0, where ∞ ∈M is the absorbing element. It follows

that
e0,∞ = h+ e0,∞ ∼ h+ 0 = h

for any h ∈ R, since ∼ is a congruence. Therefore ∼ = R × R, so that R
has no nontrivial congruence relations.

3.2.3 Simple semirings and irreducible semimodules

In this section we prove that any proper finite simple semiring is of the form
described in Theorem 3.2.3. We start with a result established and proved
by Monico for finite semirings, not assuming a zero element [Mon04, The-
orem 4.1]. We give a simpler proof of this result, assuming a zero element,
but without assuming finiteness of the semiring.

Proposition 3.2.10. Let R be a simple semiring which is not a ring. Then
the addition (R,+) is idempotent.

Proof. For x ∈ R and n ∈ N0 := {0, 1, 2, 3, . . . } let us write nx := x+ · · ·+x,
summing x n-times. Also let R + x := {y + x | y ∈ R}. Now, for x, y ∈ R
define

x ∼ y :⇔ ∃m,n ∈ N0 : mx ∈ R+ y, ny ∈ R+ x.

Then it is easily verified that ∼ is a congruence relation.
By congruence-simplicity it follows that ∼ = idR or ∼ = R × R. In the

first case, since x ∼ x + x, we deduce that (R,+) is idempotent. In the
second case, for all x ∈ R, we have x ∼ 0, so that 0 ∈ R + x. This shows
that (R,+) is a group and thus R is a ring.

Remark 3.2.11. A simple semiring R with idempotent addition and trivial
multiplication RR = {0} has order ≤ 2. Indeed, since (R,+) is idempotent,
x + y = 0 implies x = y = 0 for x, y ∈ R, so the equivalence relation ∼ on
R with classes {0} and R \ {0} is a congruence. Thus ∼ = idR and hence
|R| ≤ 2.
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Irreducible semimodules

If M is a semimodule over R, let us call the subsemimodules {0} and M
and also the quotient semimodules M/ idM

∼= M and M/(M ×M) ∼= {0}
the trivial ones.

Definition 3.2.12. A semimodule M over R satisfying RM 6= {0} is called

• sub-irreducible if it has only trivial subsemimodules,

• quotient-irreducible if it has only trivial quotient semimodules,

• irreducible if it is both sub-irreducible and quotient-irreducible.

Some authors refer to sub-irreducible and quotient-irreducible semimod-
ules as minimal and simple semimodules, respectively.

By a semimodule homomorphism we mean a map f : M → N between
semimodules over R which preserves the semimodule operations as well as
the zero element. In this case, f(M) is a subsemimodule of N , and the
relation x ∼f y if and only if f(x) = f(y), for x, y ∈ M , is a congruence
on M . On the other hand, for any subsemimodule N0 ⊆ N and any quotient
semimodule M /∼f there are natural homomorphisms i : N0 → N and
p : M →M /∼f . This establishes the following

Remark 3.2.13. Let M be a semimodule over R such that RM 6= {0}. Then

• M is sub-irreducible if and only if any nonzero homomorphism
f : N →M from a semimodule N is surjective,

• M is quotient-irreducible if and only if any nonzero homomorphism
f : M → N into a semimodule N is injective.

Remark 3.2.14. To illustrate the use of irreducible semimodules we give a
version of Schur’s Lemma (see [Her68]): LetM be an irreducible semimodule
over R with representation T : R→ End(M), r 7→ Tr. Then the commuting
semiring

C(M) := {f ∈ End(M) | f ◦ Tr = Tr ◦ f for all r ∈ R}

is a semifield, i.e. any nonzero element is invertible. Indeed, if
f ∈ C(M) \ {0}, then f : M → M is a nonzero semimodule homomor-
phism, which by Remark 3.2.13 must be injective and surjective. It then
easily follows that the inverse f−1 lies in C(M).

In particular, if (M,+) is finite and idempotent, then C(M) is a finite
proper semifield. By Proposition 3.1.5 it follows that C(M) has order ≤ 2,
so that C(M) = {0, idM} is trivial. If the representation R → End(M) is
faithful i.e. injective (this holds for example if R is simple and RM 6= {0}),
it follows that R has trivial center, since

{x ∈ R | xr = rx for all r ∈ R} = T−1(C(M)) = {0, 1} ∩R.
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Existence of irreducible semimodules

Proposition 3.2.15. Any finite simple semiring R with RR 6= {0} admits
a finite irreducible semimodule.

To prove this result we begin with two lemmas that guarantee the prop-
erty RM 6= {0} for certain semimodules M over R. By a nontotal semi-
module congruence on M is meant a congruence ∼ 6= M × M , so that
M /∼ 6= {0}.

Lemma 3.2.16. Let R be a simple semiring with RR 6= {0}, considered as
a semimodule over itself, and let ∼ be a nontotal semimodule congruence on
R. Then, for the quotient semimodule M := R/∼ we have RM 6= {0}.

Proof. Since ∼ is a semimodule congruence, r ∼ s implies x + r ∼ x + s
and xr ∼ xs for any r, s, x ∈ R. Now suppose RM = {0}. Then for any
r, x ∈ R we have [rx] = r[x] = 0, so that rx ∼ 0. Hence r ∼ s implies
also rx ∼ sx, for any r, s, x ∈ R, so that ∼ is even a semiring congruence.
Since ∼ is nontotal, we must have ∼ = idR by congruence-simplicity. Hence
M = R and RR = {0}, which contradicts our assumption.

Lemma 3.2.17. Let M be a semimodule over R such that RM 6= {0}.

1. If M is sub-irreducible, then RP 6= {0} for all its nonzero quotient
semimodules P = M /∼ .

2. If M is quotient-irreducible, then RN 6= {0} for all its nonzero sub-
semimodules N ⊆M .

Proof. (1) Let M have only trivial subsemimodules. Since RM ⊆ M is
a subsemimodule, we must have RM = M . Now let P = M /∼ be a
quotient subsemimodule with RP = {0}. Then we have M = RM ⊆ [0]∼,
and therefore M /∼ = {0}.

(2) Let A := {x ∈ M | Rx = {0}} ⊆ M be the annihilator of R in M .
Then it is easy to check that A is a semimodule of M with the additional
property that x ∈ A and x+ y ∈ A implies y ∈ A. Also it is straightforward
to check that by defining

x ∼ y :⇔ ∃ a, b ∈ A : x+ a = y + b

for x, y ∈ M a congruence ∼ on M is obtained such that its zero-class
{x ∈M | x ∼ 0} equals A. Finally note that A 6= M by assumption.

Now if M has only trivial quotient semimodules, the relation ∼ above
must equal idM , and hence A = {0}. It follows that any subsemimodule
N ⊆M with RN = 0 must be zero.
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Proof of Proposition 3.2.15. We recursively define a sequence of finite semi-
modules M0,M1, . . . ,Mn over R of decreasing sizes such that

• for all i = 0, . . . , n we have RMi 6= {0},

• for all i = 1, . . . , n we have Mi is sub-irreducible or quotient-
irreducible,

• Mn is irreducible.

We start with M0 := R, so that RM0 = RR 6= {0}.
Now let ∼ be a maximal nontotal semimodule congruence on R (probably

∼ = idR) and let M1 := R/∼ . Since ∼ is nontotal we have RM1 6= {0} by
Lemma 3.2.16. By maximality of ∼ it follows thatM1 is quotient-irreducible.

Suppose that Mi has been defined for some i ≥ 1, so that RMi 6= {0}
and Mi is sub-irreducible or quotient-irreducible. If Mi is even irreducible
we set n = i and stop.

Otherwise suppose that Mi is quotient-irreducible but has nontriv-
ial subsemimodules. Take a minimal nonzero semimodule Mi+1 ⊆ Mi.
Then RMi+1 6= {0} by Lemma 3.2.17, (2), and furthermore Mi+1 is sub-
irreducible. Now consider the case where Mi is sub-irreducible but has
nontrivial congruences. By taking a maximal nontotal congruence ∼ and
letting Mi+1 := Mi /∼ , we have RMi+1 6= {0} by Lemma 3.2.17, (1), and
furthermore Mi+1 is quotient-irreducible.

The sequence has been constructed. Since R is finite and the cardinalities
of M1,M2, . . . are strictly decreasing the sequence must terminate by an
irreducible semimodule Mn over R.

A density result

Let R be a simple semiring and M be a semimodule over R with RM 6=
{0}. Then the representation R → End(M) is nonzero and hence must
be injective, so that R can be seen as a subsemiring of End(M). If M is
irreducible the question of the “density” of R in End(M) arises. We have
already seen in Remark 3.2.14 that the commutant semiring of R in End(M)
is trivial if (M,+) is idempotent. Now we show another density result:

Proposition 3.2.18. Let R be a finite simple semiring with idempotent
addition and let M be a finite irreducible semimodule over R. Then (M,+)
is idempotent, and for all a, b ∈M there exists r ∈ R such that

rx =

{

0 if x+ a = a

b otherwise
(x ∈M).

Thus R, seen as a subsemiring of End(M), is dense (see Definition 3.2.2).
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Proof. First note that (M,+) is idempotent: By irreducibility, the subsemi-
module RM of M is nonzero, hence RM = M . So, any x ∈ M can be
written as x = ry with r ∈ R and y ∈M . It follows

x+ x = ry + ry = (r + r)y = ry = x ,

since (R,+) is idempotent, so that (M,+) is idempotent. Recall from Re-
mark 3.2.7 that now on M there is an order relation ≤ defined by x ≤ y if
and only if x+ y = y, for x, y ∈M . Recall also that, since M is finite, there
exists an absorbing element ∞ =

∑

x∈M x of (M,+).

For x ∈M define
Ix := {r ∈ R | rx = 0} ,

which is a subsemimodule of R. We have Ix+y = Ix ∩ Iy for x, y ∈M , since
rx + ry = 0 implies rx = ry = 0 for r ∈ R, because (M,+) is idempotent.
Now we claim that by defining

x ∼ y :⇔ Ix = Iy (x, y ∈M)

we obtain a semimodule congruence on M : Indeed, if x ∼ y and z ∈ M ,
we have Iz+x = Iz ∩ Ix = Iz ∩ Iy = Iz+y, so that z + x ∼ z + y. Also for
r, s ∈ R we have r(sx) = (rs)x = 0 if and only if (rs)y = r(sy) = 0, so that
Isx = Isy i.e. sx ∼ sy.

Assume that ∼ = M ×M . Then Ix = I0 = R for all x ∈ M , so that
RM = {0}, which cannot hold. Since M is quotient-irreducible it follows
that ∼ = idM . We conclude that x ≤ y is equivalent to Iy ⊆ Ix, for x, y ∈M ,
since x+ y = y if and only if Ix ∩ Iy = Ix+y = Iy.

Now let a ∈ M be fixed. If a = ∞, then the assertion trivially holds
with r = 0. So assume a 6= ∞. For any x ∈ M with x 6≤ a we have shown
before that Ia 6⊆ Ix, so the semimodule homomorphism Ia → M , r 7→ rx is
nonzero. Since M is sub-irreducible, it must be surjective, so in particular
there exists rx ∈ Ia such that rx x = ∞. Letting s :=

∑

x 6≤a rx ∈ Ia ⊆ R, for
x ∈M we have

sx =

{

0 if x ≤ a, since then sx = sx+ sa = sa = 0,

∞ if x 6≤ a, since then sx ≥ rx x = ∞,

so we have shown the assertion for b = ∞.
Consider now the subsemimodule

N := {r∞ | r ∈ R}

of M . We have ∞ = s∞ ∈ N , so that N 6= {0}. By sub-irreducibility of
M it follows N = M , so for any b ∈ M there exists r ∈ R with r∞ = b.
Then for x ∈M we have (rs)x = 0 if x ≤ a, and (rs)x = b otherwise, which
completes the proof.
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Now we complete the proof of the Theorem 3.2.3 by showing the di-
rection (1) ⇒ (2). Let R be a proper finite simple semiring and suppose
|R| > 2. Then (R,+) is idempotent by Proposition 3.2.10 and RR 6= {0}
by Remark 3.2.11. Afterwards, Proposition 3.2.15 guarantees the existence
of a finite irreducible semimodule M over R, so that R is isomorphic to a
subsemiring S of End(M). Finally, by Proposition 3.2.18 we have that S is
a dense subsemiring of End(M).

3.3 The family of finite simple semirings

Definition 3.3.1. Let M be an idempotent commutative monoid. We de-
fine SR(M) to be the collection of all dense subsemirings R ⊆ End(M).

In this section we take a closer look at the families SR(M). By the
main theorem, Theorem 3.2.3, these families form the collection of all finite
simple semirings. First we consider the question of isomorphism and anti-
isomorphism of these semirings. Then we give a criterion to decide whether
the family SR(M) is trivial. Finally we list the dense endomorphism sub-
semirings of smallest order.

Throughout this section, let M,M1 and M2 be idempotent commutative
monoids having an absorbing element.

3.3.1 Isomorphism

Proposition 3.3.2. Let R1 ∈ SR(M1) and R2 ∈ SR(M2) be isomorphic
semirings. Then also the monoids M1 and M2 are isomorphic.

We first formulate and prove a lemma. Recall from Lemma 3.2.8 that
if ∞ ∈ M is the absorbing element, then e0,∞ is an absorbing element in
(R,+) for any semiring R ∈ SR(M).

Lemma 3.3.3. Let R ∈ SR(M) and let z ∈ R be the absorbing element in
(R,+). Then the map

θ : M → Rz, b 7→ e0,b

defines an isomorphism between (M,+) and the submonoid Rz of (R,+).

Proof. Note that f ◦ e0,∞ = e0,f(∞) for all f ∈ R, so in particular
e0,b ◦ e0,∞ = e0,b for all b ∈M . This shows

Rz = Re0,∞ = {e0,b | b ∈M} ,

so θ is well-defined and surjective. It is clear that θ is injective and a
homomorphism.
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Proof of Proposition 3.3.2. Suppose there is a semiring isomorphism
φ : R1 → R2. For i = 1, 2, let zi ∈ Ri be the absorbing element in (Ri,+).
We then have φ(z1) = z2 and thus φ(R1z1) = R2z2. The restriction
φ′ = φ|R1z1

: R1z1 → R2z2 of φ is therefore an isomorphism between the
submonoids R1z1 and R2z2 of (R1,+) and (R2,+), respectively. Now for
i = 1, 2, let θi : Mi → Rizi be the isomorphism defined in Lemma 3.3.3.
Then we can construct an isomorphism

θ−1
2 ◦ φ′ ◦ θ1 : M1 →M2

between the monoids (M1,+) and (M2,+).

Next we identify anti-isomorphic pairs of simple semirings.

Remark 3.3.4. Let M be finite with corresponding lattice (M,∨,∧), so that
(M,+) = (M,∨). Then also (M,∧) is a finite idempotent commutative
monoid, which we denote by M̃ . Its corresponding lattice is the dual lattice
of M , obtained by reversing the ordered set (M,≤).

Let (L2,∨) = ({0, 1},max) and let M∗ = Hom(M,L2) be the set of
all monoid homomorphisms M → L2. Defining addition pointwise, M∗

becomes a finite idempotent commutative monoid.

Lemma 3.3.5. The monoid M∗ is isomorphic to M̃ . In fact, the map

M →M∗, a 7→ ea, where ea(x) =

{

0 if x ≤ a,

1 otherwise,

is a bijection such that ea∧b = ea ∨ eb for all a, b ∈M .

Proof. This is rephrasing the well-known result in lattice theory: Any finite
lattice is isomorphic to its lattice of ideals (see [Bir67, Section II.3]).

Proposition 3.3.6. Let M be finite. The semirings End(M) and End(M̃)
are anti-isomorphic.

Proof. By Lemma 3.3.5 we may assume M̃ = M∗. Consider the map

End(M) → End(M∗), f 7→ f∗, where f∗(φ) := φ ◦ f for φ ∈M∗.

It is easy to see that this map is well-defined and that the following algebraic
properties hold for f, g ∈ End(M):

(f + g)∗ = f∗ + g∗, 0∗ = 0, (f ◦ g)∗ = g∗ ◦ f∗.
To prove injectivity, suppose we have f, g ∈ End(M) with f∗ = g∗. With ea
as defined in Lemma 3.3.5 it follows ea(f(x)) = ea(g(x)) for all a, x ∈M , so
that f(x) ≤ a if and only if g(x) ≤ a. For all x ∈M it follows f(x) = g(x),
hence f = g.

From injectivity it follows in particular |End(M)| ≤ |End(M̃)|. We can
apply this result to M̃ to yield |End(M̃)| ≤ |End(M)|. Thus |End(M)| =
|End(M̃)| and the map is also surjective.



74 3. Simple semirings

Corollary 3.3.7. Let M be finite and suppose M as a lattice is isomorphic
to its dual lattice. Then the semiring End(M) is anti-isomorphic to itself.

Corollary 3.3.8. Let M1 and M2 be finite and let R1 ∈ SR(M1) and
R2 ∈ SR(M2) be anti-isomorphic semirings. Then the monoids M1 and M̃2

are isomorphic.

Proof. By Proposition 3.3.6, End(M2) is anti-isomorphic to End(M̃2), and
thus R1 is isomorphic to some R′

2 ∈ SR(M̃2). Now the result follows from
Proposition 3.3.2.

3.3.2 The case |SR(M)| = 1

We now discuss under which circumstances the only dense subsemiring of
End(M) is End(M) itself.

Proposition 3.3.9. Let M be finite. Then we have SR(M) = {End(M)}
if and only if the lattice (M,∨,∧) satisfies the following condition:

∀z ∈M : z =
∨

a, z 6≤a

∧

x, x 6≤a

x. (D)

Proof. If S is the subsemiring of R := End(M) generated by the set
E := {ea,b | a, b ∈M}, then we have SR(M) = {End(M)} if and only if
S = R. Note that since E is closed under multiplication (see Lemma 3.2.8)
S consists of all finite sums of elements in E. Writing 1 = idM ∈ R we show
that

S = R if and only if 1 =
∑

(a,b)∈X

ea,b (∗)

with X := {(a, b) ∈M2 | ea,b ≤ 1}.
Indeed, suppose S = R, so we can express in particular 1 as a sum of

elements in E, say 1 =
∑

i eai,bi
. Surely, eai,bi

≤ 1 and hence (ai, bi) ∈ X for
all i, so that

1 =
∑

i

eai,bi
≤

∑

(a,b)∈X

ea,b ≤ 1

and thus the right side of (∗) holds. On the other hand, suppose
1 =

∑

(a,b)∈X ea,b. Then for any f ∈ R we have

f = f ◦ 1 =
∑

(a,b)∈X

f ◦ ea,b =
∑

(a,b)∈X

ea,f(b) ∈ S

(see Lemma 3.2.8), so that S = R. This proves the equivalence (∗).
Note next that (a, b) ∈ X i.e. ea,b ≤ 1 if and only if b ≤ x for all x 6≤ a

which is equivalent to b ≤ ∧x, x 6≤a x. This shows that

∑

(a,b)∈X

ea,b =
∑

a∈M

ea,ba
with ba :=

∧

x, x 6≤a

x.
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Now for all z ∈M we have

∑

(a,b)∈X

ea,b(z) =
∑

a∈M

ea,ba
(z) =

∨

a, z 6≤a

ba =
∨

a, z 6≤a

∧

x, x 6≤a

x,

which together with (∗) concludes the proof.

Remark 3.3.10. The condition (D) given in proposition 3.3.9 is fulfilled if
and only if the lattice M is distributive, or equivalently, M is isomorphic to
a ring of subsets (cf. [Bir67, Section III.3]).

Indeed, assume that (M,∪,∩) is a ring of subsets, i.e. a sublattice of a
power set lattice (P(Ω),∪,∩). For ω ∈ Ω define Aω :=

⋃

X∈M,ω/∈X X ∈ M .
Then for X ∈M we have X ⊆ Aω if and only if ω /∈ X. It follows

Z ⊇
⋃

A, Z 6⊆A

⋂

X, X 6⊆A

X ⊇
⋃

ω, Z 6⊆Aω

⋂

X, X 6⊆Aω

X =
⋃

ω, ω∈Z

⋂

X, ω∈X

X ⊇ Z

for all Z ∈M , so M satisfies property (D).
On the other hand, if we have a lattice (M,∨,∧) with condition (D), let

Ω := {ba | a ∈ M} with ba :=
∧

x, x 6≤a x. Consider the representation of M
given by

Φ : M → P(Ω), z 7→ {ba | a ∈M, z 6≤ a}.
We can see directly that z1 ≤ z2 implies Φ(z1) ⊆ Φ(z2). On the

other hand, with the help of (D) we conclude that Φ(z1) ⊆ Φ(z2) implies
z1 =

∨

a, z1 6≤a ba ≤
∨

a, z2 6≤a ba = z2. It follows that Φ is a lattice monomor-
phism, so that M is isomorphic to a sublattice of (P(Ω),∪,∩).

3.3.3 Congruence-simple semirings of small order

Table 3.1 shows the smallest nontrivial idempotent commutative monoids M
(up to isomorphism), represented by the Hasse-diagram of the corresponding
lattices, together with the semirings in the collection SR(M). We write Rm

for a semiring with m elements.
These, together with R2,a from Remark 3.2.4, are the smallest

congruence-simple semirings which are not rings. The smallest such semiring
not shown in Table 3.1 has order 98.

Note that R50,a and R50,b are anti-isomorphic to each other by Proposi-
tion 3.3.6, whereas the other semirings in Table 3.1 are self-anti-isomorphic
by Corollary 3.3.7. Furthermore, all semirings in Table 3.1 except R42 and
R44 have a one-element.
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{R50,c, R47, R46,a,
R46,b, R46,c, R45, R44}
(where R46,a, R46,b and
R46,c are isomorphic)

Table 3.1: The smallest lattices together with the corresponding endomor-
phism semirings.



Chapter 4

Semigroup actions based on

simple semirings

The idea to use simple semirings for constructing semigroup action based
cryptosystem originates from the work of Monico, Maze and Rosenthal
[Mon02, Maz03, MMR07].

Simple semirings appear to be well-suited for cryptographic purposes,
because of the following reasons:

• They have enough structure for a sensible matrix multiplication.
Hence they can be used as building blocks for large objects, like a
family of semigroup actions.

• Simple semirings avoid a Pohlig-Hellman analogous reduction attack,
since they do not admit smaller homomorphic images.

• Many linear algebra tools for fields like diagonalization are not appli-
cable to proper semirings.1

The classification of finite simple semirings with zero, Theorem 3.2.3,
provides new methods to construct semigroup actions. There are essentially
two approaches for constructing a family of semigroup actions with difficult
sdl problem, based on simple semirings.

(1) Consider a fixed simple semiring of small or moderate size, given as a
“black-box”, and use it as a building block to construct larger objects.
The operation tables are precomputed and stored explicitly in memory,
thus providing maximal efficiency.

1Note that a generalization from fields to simple rings does not lead to something new:
By the Wedderburn–Artin theorem, any finite simple ring R with R2 6= {0} is isomorphic
to the matrix ring Matn×n(Fq) over a finite field; hence matrix rings over R are isomorphic
to matrix rings over Fq, in fact Matm×m(R) ∼= Matmn×mn(Fq).
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(2) Consider huge simple semirings, given as the endomorphism semirings of
lattices of moderate size, and use them directly. The semiring operations
are provided implicitly by storing only the lattice structure.

The sections of this chapter deal with the two approaches outlined above.
The first section gathers some results from matrix theory over semirings and
presents two semiring-based cryptosystems that have already been proposed.
In the second section large endomorphism semirings are considered with
respect to their cryptographic applicability.

In this chapter we assume that every semiring has a zero element.

4.1 Matrices over semirings

A practical method to construct large scalable objects out of smaller semi-
rings is to use matrices. We consider matrix semirings and provide a link
between endomorphism semirings and matrix semirings. Then we investi-
gate the conditions needed for the associativity of matrix multiplication.
Afterwards we consider semigroup actions based on matrices over semirings.

Definition 4.1.1. Let R be a commutative monoid. Denote by Matm×n(R)
the commutative monoid of all m× n matrices with entries in R, where for
A = (aij), B = (bij) ∈ Matm×n(R) the matrix sum A+ B = (aij + bij) is
defined component-wise.

Let R be a semiring. For matrices A = (aij) ∈ Matm×n(R) and
B = (bjk) ∈ Matn×p(R) define the matrix product AB to be the matrix
(cik) ∈ Matm×p(R), where

cik =
n
∑

j=1

aij bjk .

The set of square matrices Matn×n(R), together with matrix sum and
matrix product, forms a semiring. It is called the matrix semiring .

If the base semiring has a one, then also the matrix semiring has a one.
We cite from [Maz03, Theorem 4.14] or [MMR07, Theorem 5.5]:

Proposition 4.1.2. Let R be a semiring with one. For every semiring
congruence ≈ on Matn×n(R) there is a semiring congruence ∼ on R such
that

(aij) ≈ (bij) ⇔ ∀ i, j : aij ∼ bij .

In particular, if R is simple then also Matn×n(R) is simple.
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4.1.1 Matrices describing homomorphisms

As matrices over a field K are used to describe linear maps between vector
spaces over K, matrices over semirings can be used to describe semimodule
homomorphisms between free semimodules. In this section we present some
elementary results, most of them can be found in [Gol99, Sections 14,17].

We start our discussion with homomorphisms of commutative monoids.
Let M1, . . . ,Mn be commutative monoids, and let

∏n
i=1Mi be the Carte-

sian (or direct) product of the monoids. Consider for j = 1, . . . , n the
natural monomorphism εj : Mj → ∏n

i=1Mi and the natural epimorphism
πj :

∏n
i=1Mi →Mj .

Let N be another commutative monoid. There are isomorphisms of
monoids

Hom
(

n
∏

i=1

Mi, N
)

∼=
n
∏

i=1

Hom(Mi, N) (4.1)

f 7→ (f ◦ εi)n
i=1

(saying that
∏n

i=1Mi together with the maps εi is the categorical coproduct),
and

Hom
(

N,
n
∏

i=1

Mi

)

∼=
n
∏

i=1

Hom(N,Mi) (4.2)

f 7→ (πi ◦ f)n
i=1

(saying that
∏n

i=1Mi together with the maps πi is the categorical product).
By combining (4.1) and (4.2) we obtain:

Lemma 4.1.3. For any commutative monoids M1, . . . ,Mm and N1, . . . , Nn

we have an isomorphism of monoids

Hom
(

n
∏

j=1

Nj ,
m
∏

i=1

Mi

)

∼=
∏

i,j

Hom(Nj ,Mi) .

Under this isomorphism a map f ∈ Hom
(

∏n
j=1Nj ,

∏m
i=1Mi

)

corre-

sponds to the matrix (πi ◦ f ◦ εj)i,j =: (fij)i,j.
Conversely, a matrix (fij)i,j with fij ∈ Hom(Nj ,Mi) corresponds to the

map f ∈ Hom
(

∏n
j=1Nj ,

∏m
i=1Mi

)

defined by

f
(

(mj)
n
j=1

)

:=
(

n
∑

j=1

fij(mj)
)m

i=1
.
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Regarding composition of maps, we have:

Lemma 4.1.4. Let Mi, Nj , Ok for i, j, k be commutative monoids. If

f ∈ Hom
(

∏n
j=1Nj ,

∏m
i=1Mi

)

and g ∈ Hom
(

∏o
k=1Ok,

∏n
j=1Nj

)

we have

f ◦ g ∈ Hom
(

∏o
k=1Ok,

∏m
i=1Mi

)

, and for the (i, k)-entry hik of the repre-

sentation of h = f ◦ g as a matrix we have

hik =
n
∑

j=1

fij gjk ,

which is the usual matrix product.

Proof. We have hik = πi ◦ f ◦ g ◦ εk. With the notation f ◦ g = f · g = f g
we compute

hik = πi · f g · εk = πi f · idQn
j=1

Nj
· g εk

= πi f ·
n
∑

j=1

εjπj · g εk

=
n
∑

j=1

πi f εj · πj g εk =
n
∑

j=1

fij gjk .

The following result follows immediately from Lemmas 4.1.3 and 4.1.4.

Proposition 4.1.5. Let M,N be commutative monoids. Then

(1) Hom(Nn,Mm) ∼= Matm×n(Hom(N,M)) as commutative monoids.

(2) End(Nn) ∼= Matn×n(End(N)) as semirings.

The results of Lemmas 4.1.3 and 4.1.4 also hold if the category of com-
mutative monoids is replaced by the category of left or right semimodules
over a semiring, since also here the finite Cartesian product serves as the
categorical coproduct and product. For example, let R be a semiring and
NR and MR be right semimodules over R, then

HomR(Nn
R,M

m
R ) ∼= Matm×n(HomR(NR,MR))

as commutative monoids; here HomR denotes the semimodule homomor-
phisms.

Lemma 4.1.6. Let R be a semiring with one. Denote by RR the semiring
R, seen as a right module over itself. Then R ∼= EndR(RR) as semirings.
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Proof. Consider the map

T : R → End(R,+)

r 7→ Tr : x 7→ rx ,

which is a semiring homomorphism. If Tr = Ts then r = Tr(1) = Ts(1) = s,
hence T is injective. It remains to prove imT = EndR(RR).

For each r ∈ R we have Tr(xs) = r(xs) = (rx)s = Tr(x)s, hence
Tr ∈ EndR(RR). Conversely, for f ∈ EndR(RR) let r := f(1), then
f(x) = f(1x) = f(1)x = rx for all x ∈ R, and hence f = Tr ∈ imT .

As a corollary we get the following interpretation of matrices as endo-
morphisms:

Proposition 4.1.7. Let R be a semiring with one. Then

(1) Hom(Rn
R, R

m
R ) ∼= Matm×n(R) as commutative monoids.

(2) End(Rn
R) ∼= Matn×n(R) as semirings.

Under these isomorphisms, a matrix (rij) ∈ Matm×n(R) corresponds to

the map f ∈ Hom(Rn
R, R

m
R ) defined by f

(

(mj)
n
j=1

)

:=
(

∑n
j=1 rij mj

)m

i=1
.

Remark 4.1.8. Let R be a semiring with one. A matrix A ∈ Matn×n(R)
is called invertible if there exists a matrix B ∈ Matn×n(R) such that
AB = BA = In, where In denotes the identity matrix.

It follows from Proposition 4.1.7, (2) that a matrix A is invertible if and
only if its corresponding endomorphism is an isomorphism.

Furthermore, if R is finite then a left-invertible matrix A over R is al-
ready invertible. Indeed, if A has a left inverse, then also the corresponding
endomorphism fA ∈ EndR(Rn

R) has a left inverse. Consequently, fA is in-
jective and since R is finite, fA has to be bijective. This implies that fA is
an isomorphism and hence A is invertible. A similar argument shows that
a right-invertible matrix is already invertible.

The property that AB = In implies BA = In is also true for commuta-
tive infinite semirings, as shown by Reutenauer and Straubing [RS84].

4.1.2 Associativity of matrix multiplication

It is natural to ask which axioms a general ring-like algebraic structure
(R,+, ·) must obey in order that matrix multiplication over R is associative.
We will clarify this question and see that under very weak assumptions
exactly the semiring axioms have to be satisfied, i.e. semirings are the most
general structures such that matrix multiplication is associative.

Thus let (R,+, ·) be any algebraic structure of type (2, 2), i.e. R is a set
with two binary operations + and · on R. On the set Matn×n(R) of square
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matrices with entries in R, we can formally define the matrix multiplication:
If A = (aij), B = (bij) are in Matn×n(R), then let

AB = (cik) with cik =
n
∑

j=1

aij bjk ,

where we agree to evaluate first the products and then the sum right-
associatively.

Proposition 4.1.9. Let (R,+, ·, 0) be an algebraic structure of type (2, 2, 0),
i.e. + and · are binary operations on R and 0 is an element of R. Assume
that the identities 0 + x = x = x + 0 and 0x = 0 = x 0 hold and that
R ·R = R.

Let n be an integer, n ≥ 2. If the multiplication of n × n matrices over
R is associative, then (R,+, ·) is a semiring.

Proof. It is easy to show that the map Mat2×2(R) → Matn×n(R) given by

A 7→
(

A 0 · · ·
0 0
.
.
.

. . .

)

is a groupoid monomorphism. Therefore, it suffices to consider the case
n = 2.

Assume that the associativity condition (AB)C = A (BC) holds for all
A,B,C ∈ Mat2×2(R). Let

A =

(

e f
∗ ∗

)

, B =

(

a b
c d

)

, C =

(

g ∗
h ∗

)

with a, b, c, d, e, f, g, h ∈ R. Then the equation (AB) · C = A · (BC) reads
(

ea+ fc eb+ fd
∗ ∗

)

·
(

g ∗
h ∗

)

=

(

e f
∗ ∗

)

·
(

ag + bh ∗
cg + dh ∗

)

,

so the (1, 1)-entries give the equation

(ea+ fc)g + (eb+ fd)h = e(ag + bh) + f(cg + dh) . (4.3)

Now letting e = h = 0 we have (fc)g = f(cg), hence (R, ·) is associative.
If we let only e = 0 in (4.3), then f(cg) + f(dh) = f(cg + dh), hence
fu + fv = f(u + v) for all u, v ∈ R, since RR = R. Similarly, if h = 0
it follows (ea + fc)g = (ea)g + (fc)g and thus (u + v)g = ug + vg for all
u, v ∈ R.

Furthermore, letting c = 0 in (4.3) yields

eag + (ebh+ fdh) = (eag + ebh) + fdh ,

and since RRR = R this implies that (R,+) is associative. Finally, let
a = d = 0 in (4.3) to see fcg + ebh = ebh + fcg and thus (R,+) is also
commutative.
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4.1.3 Semigroup actions based on matrices over semirings

We present two ideas to construct interesting semigroup actions using a fixed
semiring. Both of them involve matrices over semirings.

The first semigroup action is a special case of a semimodule action, see
Example 2.1.6, (4). It was studied by Monico [Mon02, Section 4.3], see also
[MMR07, Section 4].

Example 4.1.10. Let R be a semiring and let M be a semimodule over
R. Consider the natural action of the semiring Matn×n(R) on the set Mn,
given by

(

(aij), (xj)
)

7→
(

n
∑

j=1

aij . xj

)

.

Note that a special case of this example for n = 1 is the exponentiation
in a cyclic group, see Example 2.1.5.

Remark 4.1.11. Consider the case when R is the ring (Zℓ,+, ·) acting on an
abelian group (M, ·) of order ℓ by exponentiation. The action is

Matn×n(Zℓ) ×Mn →Mn ,
(

(aij), (xj)
)

7→
(

n
∏

j=1

x
aij

j

)

j
.

Monico investigated the hardness of the sdl problem for this special case.
He showed that there is a Pohlig-Hellman type reduction to the case ℓ = pk,
where p is a prime. Also, if M is a cyclic group, the sdl problem reduces to
several discrete logarithm problems in the group M .

However, the difficulty of the sdl problem in the general case in unclear.
It might be possible to construct interesting semigroup actions out of a
semimodule over a proper semiring.

Our second semigroup action was proposed by Maze, see [Maz03, Sec-
tion 5.4] and [MMR07, Section 5]. It is a special case of a two-sided action,
see Example 2.1.8, (1).

Example 4.1.12. Let R be a semiring, and let Mn(R) := Matn×n(R) be
the semiring of n× n matrices. Consider the following two-sided semigroup
action

ρn :
(

Mn(R) ×Mn(R)op
)

×Mn(R) →Mn(R) ,
(

(A1, A2), X) 7→ A1X A2 .

The sdl problem in this semigroup action seems to be hard to solve in
general.
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Commutative subsemirings of matrix semirings

Recall that several cryptographic applications of semigroup actions (Cryp-
tosystems 2.3.6 and 2.3.8) depend on the ability to generate pairs of commut-
ing elements of the semigroup. The semigroup actions of Examples 4.1.10
and 4.1.12 (as stated there) are not commutative. One possible method to
generate commuting elements is to restrict the semigroup action to a com-
mutative subsemigroup. This approach was pursued in the original work
[Mon02, Maz03, MMR07].

In order to make the two-sided action of Example 4.1.12 commutative
the authors provided a method for constructing commutative subsemirings
of matrix semirings, which we outline below.

Definition 4.1.13. Let R be a semiring with center

C = {r ∈ R | r s = s r for all s ∈ R} ,
and letA ∈ Matn×n(R) be a matrix. Define C[A] to be the set of polynomials
in A with coefficients in C.

Lemma 4.1.14. Let R, C, and A as above. The set C[A] is a commutative
subsemiring of the matrix semiring Matn×n(R).

Proof. The center C is a commutative subsemiring of R. Therefore, the
polynomial semiring C[x] over C is also commutative. Now C[A] is the
image of the semiring homomorphism

C[x] → Matn×n(R) , p(x) 7→ p(A) ,

and thus a commutative subsemiring of Matn×n(R).

Remark 4.1.15. For security reasons one is interested in large commutative
subsemirings C[A].

(1) If R is a commutative ring with one, the Cayley-Hamilton theorem (see
e.g. [Bro93]) applies: We have χA(A) = 0, where χA(x) is the charac-
teristic polynomial of A. In particular,

|C[A]| = |R[A]| ≤ |R|deg χA ≤ |R|n .

(2) A general lower bound is given by

|C[A]| ≥ ord(A) := |{Ai | i ∈ N0}| ,
the order of A. It can be shown (see e.g. [MMR07, Proposition 5.11])
that for any semiring R with one there exist matrices A ∈ Matn×n(R)
having order ≥ g(n). Here, g(n) is Landau’s function, defined as

g(n) = max{ord(σ) | σ ∈ Sn} ,
where Sn is the permutation group on n elements. Its asymptotic be-
haviour is log g(n) ∼

√
n log n , see [Lan03].
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Towards a concrete cryptosystem

To propose concrete cryptosystems based on the two-sided semigroup action
of Example 4.1.12 we have to specify (see Section 2.3):

(1) A family of semigroup actions.

(2) An instance generator that outputs a semigroup action instance (i, g),
depending on a security parameter k.

(3) A pair (KA,KB) of compatible key generators.

For (1), we take the family of semigroup actions ρn of Example 4.1.12
using n× n matrices over a fixed semiring R.

For (2), we generate a semigroup action instance (i, g). Here we
may choose i = k = n, and as the generator g an arbitrary matrix
X ∈ Matn×n(R).

For (3), the key generator K = KA = KB depends on a choice of ma-
trices A1, A2 of large order. It outputs matrices M1 = p1(A1) ∈ C[A1] and
M2 = p2(A2) ∈ C[A2], e.g. by generating polynomials p1(x), p2(x) ∈ C[x] of
some bounded degree.

See [MMR07] for details. In particular, experiments using the simple
semiring with 6 elements (see Example 3.2.5) showed that the sizes of the
subsemirings C[A] are usually much larger than the lower bound provided
by Landau’s function g.

4.2 Large endomorphism semirings

Another, novel approach to build families of semigroup actions is to start
with a lattice L = (L,∨,∧) of moderate size. From that one constructs a
huge simple semiring as the endomorphism semiring of the monoid (L,∨),
according to Theorem 3.2.3.

The semiring operations cannot be stored explicitly in this case. They
are provided implicitly by storing only the lattice structure. We note that
by Proposition 4.1.5 the matrix-based approach of the previous section can
be understood as a special case of the “lattice-based” approach presented
here.

The cryptosystems are still under development and we present some open
problems.

Example 4.2.1. We describe the endomorphism semirings R = End(L,∨)
for some special cases of the lattice (L,∨).

(1) Let L be a totally ordered set of order n, say L = {1, . . . , n} and
a ∨ b = max(a, b) for a, b ∈ L. In this case the lattice endomorphisms
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f : L → L are exactly the monotone functions such that f(0) = 0. We
have:

|End(L,∨)| =

(

2n− 2

n− 1

)

∼ c
4n

√
n
.

In particular, the order of End(L,∨) is exponential in the order of L.

(2) Let L be a Boolean lattice, i.e. L is isomorphic to an n-fold direct
product Mn of the lattice M = {0, 1}. By Proposition 4.1.5, End(L) ∼=
Matn×n(R), where R = End(M) is the Boolean semifield. It follows:

|End(L,∨)| = 2n2

,

whereas |L| = 2n. With m = |L| we thus have |End(L,∨)| = mlog2 m.

(3) Let X be a set with n − 2 elements, and let L = X ∪ {0, 1}, ordered
such that 0 ≤ x and x ≤ 1 for all x ∈ X, but x and y are incomparable
for every x, y ∈ X, x 6= y, see Figure 4.1. Then L is a lattice of order n.
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Figure 4.1: The lattice of Example 4.2.1, (3).

We derive a formula for |End(L,∨)| for this lattice L. A map f : L→ L
satisfying f(0) = 0 is an endomorphism of (L,∨) if and only if

(i) f(x) ≤ f(1) for all x ∈ L,

(ii) f(x) + f(y) = f(1) for all distinct x, y ∈ X.

Let k := |X| = n− 2. Now if f is nonzero we distinguish two cases:

(a) f(1) ∈ X.

Let z = f(1) ∈ X. For all x ∈ L by (i) we have f(x) ∈ {0, z},
and for all distinct x, y ∈ X by (ii) we have f(x) = z or f(y) = z.
Therefore, f(x) = z for all x ∈ X, except possibly one. This gives
k(k + 1) endomorphisms.

(b) f(1) = 1.

By (ii) for all distinct x, y ∈ X either one of f(x), f(y) is 1 or
f(x), f(y) are distinct elements of X. Let A := {x ∈ X | f(x) 6= 1}.
If |A| = 1, say A = {x}, then f(x) ∈ X ∪ {0} can be arbitrary,
and if |A| ≥ 2, then f |A : A → X has to be injective. This gives
1+k(k+1) endomorphisms for |A| ≤ 1 and

∑k
j=2

(

k
j

)

k · · · (k−j+1)
endomorphisms for |A| ≥ 2.
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Let a(k) :=
∑k

j=0

(

k
j

)

k!
j! be the number of partial injective transforma-

tions on a k-element set. Putting everything together we see

|End(L,∨)| = a(k) + (k + 1)2 .

Clearly, |End(L,∨)| ≥ a(k) ≥ k!. In fact, a(k) it sequence no. A002720
in Sloane’s on-line encyclopedia of integer sequences [Slo09], and it can
be shown that

a(k)

k!
∼ exp(2

√
k)

2
√

πe
√
k
.

For security analysis of cryptosystems based on an endomorphism semi-
ring it is important that one can estimate its size. Given a random lattice L
we believe that it is very hard to find the size |End(L,∨)| exactly. Even
giving some (tight) lower or upper bounds seems to be a nontrivial task.

Furthermore, one has to provide algorithms for random drawing of en-
domorphisms from End(L,∨).

One approach to tackle these questions practically is by a Monte-Carlo
algorithm, given we are able to solve the following challenge: Is there a
superset S ⊃ End(L,∨) such that

(1) |S| is computable,

(2) uniform random drawing from S is feasible,

(3) |S|/|End(L,∨)| is not too large?

For example, the set S = LL of all functions L→ L would be a superset
of End(L,∨) satisfying (1) and (2), but not (3).

We mention that one can probably exploit particular properties of lattice
classes, like distributivity, to tackle these questions.

4.2.1 Cryptosystems using simple semirings

Lattices L of moderate size lead to large simple semirings End(L,∨) which
can be used for new and interesting semigroup actions for cryptography. We
illustrate this by an example.

Let LA and LB be lattices and L be the composed lattice
LA

L̇B

(we identify

the greatest element of LB and the least element of LA), see Figure 4.2.
Consider the simple semiring R = End(L,∨).

On A = R×R define a semigroup operation (f, g) · (h, k) := (f ◦h, k ◦g).
Then let A act on X = R by the two-sided composition

A×X → X, ((f, g), x) 7→ f ◦ x ◦ g.

Now let RA be the subsemiring of R consisting of all endomorphisms of
L acting only on LA and leaving LB fixed. Define RB similarly. Then it is
easy to see that f ◦ g = g ◦ f for all f ∈ RA and g ∈ RB.



88 4. Semigroup actions based on simple semirings

Figure 4.2: A decomposable lattice.

We define CA = RA × RB and CB = RB × RA, which will be mutually
commuting subsets of G. Then we can set up the key exchange protocol.

• Alice and Bob choose publicly x ∈ X.

• Alice privately chooses fA ∈ RA and gA ∈ RB. She publishes fA◦x◦gA.

• Bob privately chooses fB ∈ RA and gB ∈ RB. He publishes gB ◦x◦ fB.

• They both can compute their shared key k = fA ◦ (gB ◦ x ◦ fB) ◦ gA =
gB ◦ (fA ◦ x ◦ gA) ◦ fB.

We have to investigate the security of this cryptosystem for different
choices of the lattices LA and LB. It is also important that the endomor-
phism x ∈ X = End(L,∨) is chosen in such a way that a maximal “mixing”
of elements in the upper half and the lower half of the lattice is provided.

Even though this example might already lead to a practical cryptosys-
tem, we note that it is of rather preliminary nature. Indeed, the addition
of the semiring R can be of significant benefit when looking for commut-
ing elements. For this notice that if we have elements ai, bj ∈ R such that
aibj = bjai for all i, j, then also

(

∑

i

ai

)(

∑

j

bj

)

=
(

∑

j

bj

)(

∑

i

ai

)

.
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In fact, at this point it appears to be open if there are methods which are
applicable to attack public-key cryptosystems involving both operations of
a simple semiring.

To mention a final research problem at the end of this dissertation, there
may well be other kinds of interesting lattices and methods to create mutu-
ally commuting subsets of endomorphisms, thus leading to new public-key
cryptosystems. It is advisable to study several tools from semiring theory
and lattice theory in detail to progress in this direction.
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dienbücher Mathematik, B. G. Teubner, Stuttgart, 1993.

[HW98] , Semirings: algebraic theory and applications in com-
puter science, Series in Algebra, vol. 5, World Scientific Pub-
lishing Co. Inc., River Edge, NJ, 1998.

[Iiz59] Kenzo Iizuka, On the Jacobson radical of a semiring, Tôhoku
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