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1 Introduction to the DLP

Let pG, �q be a cyclic group of order n, and let α P G be a generator.

Definition 1.1. TheDiscrete Logarithm Problem (DLP) in the groupG is the following com-
putational problem:

• given the group pG, �q, the generator α P G, and β P G,
• find x P Zn such that αx � β.

Notation logα β :� x.

Remark 1.2. Consider the group isomorphism

ϕ : Zn Ñ G, x ÞÑ αx.

This map is efficiently computable (via the Square-and-Multiply method), but difficult in
general to invert. Such a map is called a one-way function.

Example 1.3. Let G � Z�
13
, the group of invertible elements modulo 13, and let α � 2.

x 0 1 2 3 4 5 6 7 8 9 10 11

αx 1 2 4 8 3 6 12 11 9 5 10 7

One sees that logα 5 � 9. Check this using the Square-and-Multiply method: 29 � 28 � 2 �pp22q2q2 � 2 � p42q2 � 2 � 32 � 2 � 5.

Which groups are used for the DLP?

• F�qn , where q � pn, the multiplicative group of a finite field,

• EpFqq, the Fq-rational points on an elliptic curve,

• JpFqq, the Jacobian of a (hyperelliptic) curve.� Institute of Algebra, TU Dresden, 01062 Dresden, Germany, E-mail: jens.zumbragel@ucd.ie. Supported
by the Irish Research Council, grant number ELEVATEPD/2013/82.
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Application

The difficulty of the DLP is used for secure Internet communication. Here are examples
for three basic cryptographic protocols [7, 8].

1. Key agreement:

Alice public BobpG, �q, α
a P Zn Ñ αa

αb � b P Zn
kA � pαbqa kB � pαaqb

Alice and Bob have shared a common secret key kA � kB .

2. Encryption: AliceÑ Bob

Bob chooses b P Zn and releases his public key β :� αb.
Alice has secret messagem P G, chooses a P Zn and sends ciphertextpγ, δq � pαa, m` βaq.
Bob decrypts by computing δ a γb � δ a αab � δ a βa � m.
Here,` is some arbitrary group operation (say, XOR), and a its inverse.

3. Signature: BobÑ Alice

Bob chooses b P Zn and releases his public key β :� αb.
Suppose there is a computable “hash” map GÑ Zn, r ÞÑ r̄.
To sign a message messagem P Zn, Bob chooses k P Z�n and sendspr, sq � pαk, k�1pm� br̄qq P G� Zn.

Alice verifies the signature by checking αm � βr̄rs.
This works, since βr̄rs � αbr̄αm�br̄ � αm.

DLP algorithms

Definition 1.4. Notation for running time:

Lnpα, cq :� exp
�pc� op1qqplog nqαplog log nq1�α�,

where α P r0, 1s and c ¡ 0.

The running time is usually given in terms of the input size, which for a DLP algorithm
in a group of order nmeans log n. We distinguish between:

• polynomial time: Opplog nqcq � exp
�pc� op1qqplog log nq�, i.e., α � 0,

• exponential time: Opncq � exp
�pc� op1qqplog nq�, i.e., α � 1,

• subexponential time: 0   α   1.
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Example 1.5. Multiplication and exponentiation in Zp or Fq are polynomial time algo-
rithms. On the other hand, generic algorithms for the DLP, which do not exploit a partic-
ular group representation and work in any group, are exponential time. One example of
a generic algorithm is the following.

Algorithm 1.6. Baby-Step-Giant-Step method to compute logα β. Letm :� r?ns.
1. compute αi, for all 0 ¤ i   m (baby steps)

2. compute βα�mj , for all 0 ¤ j   m (giant steps)

If a “collision” βα�mj � αi is found, we have β � αmj�i, and hence logα β � mj � i.
The running time is Op?nq, i.e., Lnp1, 12q.
Index Calculus Method

The index calculus method (ICM) yields a subexponential time algorithm for certain par-
ticular groups. The method is first described abstractly for a general cyclic group G.

We choose a subset S � G called factor base. Consider the homomorphism

ϕ : ZSn Ñ G, pesqsPS ÞÑ¹
sPS ses .

Assume that xSy � G, i.e., that ϕ is surjective. This method has three phases.

1. Relation Generation: Find elements in kerϕ, called relations. We thereby construct
a subsetR � kerϕ.

2. Linear Algebra: Find a nonzero element pxsqsPS P R
K, i.e., °sPS xses � 0 for allpesqsPS P R.

3. Descent Tree: Given β P G find pesqsPS such that β � ±
sPS ses . Then logα β �°

sPS es logα s has been found.
Start with β as root and descend down, i.e., rewrite elements as a product of
“smaller” elements, until only factor base elements remain.

When do the relations collected in the first step determine the factor base logarithms
in the second step?

Lemma 1.7. If pxsqsPS P R
K and spanR � kerϕ then Dλ P Zn �s P S : xs � λ logα s.

Proof. It holds R
K � pspanRqK � pkerϕqK � ZSn{ kerϕ � Imϕ � Zn. On the other

hand, we have plogα sqsPS P R
K. Indeed, since logα : GÑ Zn is a group homomorphism,°

sPS es logα s � logαp±sPS sesq � 0 for all pesqsPS P R � kerϕ.

How to devise a concrete algorithm out of this framework? The following algorithm
works for Zp � Z{ppq and Fpn � Fprxs{pf pxqq, where f is an irreducible polynomial of
degree n. Both fields are represented as a residue class ring R{I of a unique factorisa-
tion domain R. The index calculus method crucially depends on the ability to obtain
factorisations of random elements into “small” factors in R, using trial division.
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Algorithm 1.8. Basic Index Calculus Method to compute logα β.
Choose a number t and let the factor base S � tp1, . . . , ptu consist of the t smallest primes,
or monic irreducible polynomials, respectively. For simplicity, we assume α P S.

1. For random k try to write αk � ± peii , using trial division. If successful, a relation
is found.

2. If more than t relations are found, solve the corresponding linear system to obtain
logα pi for all pi P S.

3. For random k try to write βαk �± p
fi
i and conclude logα β � �k �° fi logα pi.

The running time has been analysed by Adleman [1]. By using an optimal choice for
the factor base size t one obtains the subexponential running time Lp1

2
, 1q.

Example 1.9. Let G � Z�
101

, so that n � 100, and let α � 2. As factor base we choose
S � t2, 3, 5, 7u.

1. Suppose we take k � 7, k � 9, and k � 33. We find the relations 27 � 33, 29 � 7,
and 233 � 5 � 7.

2. Writing log for log2, we obtain the linear equations 7 � 3 log 3, 9 � log 7, and 33 �
log 5� log 7. Computing in Z100 we conclude log 5 � 24 and log 3 � 7{3 � 69.

3. Suppose the target is β � 42, and we take k � 14. Then β � 214 � 3 � 5, hence
log β � 69� 24� 14 � 79.

2 Factoring Problem and Further Developments of the ICM

Algorithms for the DLP have often progressed in parallel with factoring algorithms.

Definition 2.1. The Integer Factorisation Problem (IFP) is the following problem:

• given a composite integer n � pq, where p, q are different primes, log p � log q,

• find the prime factors p, q of n.

Most cryptographic protocols used in practice are based either on the DLP or on the
IFP. The most famous one is the RSA cryptosystem [19].

• RSA encryption: AliceÑ Bob

Choose a composite n as above, let ϕpnq :� |Z�n| � pp � 1qpq � 1q, choose e P Z�
ϕpnq

and compute d :� e�1 P Z�
ϕpnq. Bob’s public key is pn, eq, his private key is d.

Alice encrypts a messagem P Z�n by sending c � me.
Bob decrypts the ciphertext by cd � med � m, since ed � 1modulo |Z�n| � ϕpnq.
(The procedure also works for messagesm P Zn.)

• Signature: BobÑ Alice

With the same setup as before, Bob signs a messagem P Z�n by computing s � md.
Alice verifies the signature by computing se � m.
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Factoring algorithms

Usually, factoring algorithms are based on the congruent squares attack:

given n, generate numbers x, y such that x2 � y2 mod n.

Then n divides px�yqpx�yq, and, assuming that x, y are random and independent, with
probability 1

2
we have x � �y, in which case gcdpn, x� yq P tp, qu.

A numberm is called B-smooth if all its prime factors are ¤ B.

Algorithm 2.2. Index Calculus Method to find a congruent square x2 � y2 mod n.
Let S � tp prime | p ¤ Bu be the factor base.

1. Find elements xi such that zi :� x2i mod n is B-smooth; let zi �± pep,i and i P I .
2. Solve a linear system over F2 to find a subset J � I such that

°
iPJ ep,i is even for

all p P S, so that
±
iPJ zi is a square.

Let x :�±iPJ xi and z :�±iPJ zi, then x2 � z mod n and z is a square.

If the xi are chosen randomly in t1, . . . , nu, then the zi are expected to be in the order
of n, so less likely to be smooth.

The idea of the Quadratic Sieve [18] is instead to use xi � ?
n � i for small i, so that

zi � 2
?
ni� i2 � ?

n.
For the complexity analysis of index calculus methods the following result is crucial.

Theorem 2.3 (Canfield, Erdös, Pomerance [6]). Let P be the probability that a number int1, . . . ,Mu is B-smooth. Then

P � u�p1�op1qqu where u � logM

logB
.

In the following we use the notation Lnpαq as a short hand for Lnpα, cq for some c ¡ 0.

Corollary 2.4. If B � LM p12 q the expected #trials to obtain a B-smooth number is LM p12 q.
Proof. Using the formula for LM we compute, ignoring op1q terms,

u � logM

logB
� 1

c

plogMq1{2plog logMq1{2
and hence

uu � exppu log uq� exp
�
1

c

plogMq1{2plog logMq1{2 � plog 1

c
� 1

2
log logM � 1

2
log log logMq�� exp

�p 1

2c
� op1qqplogMq1{2plog logMq1{2� � LM p12 , 1

2c
q

For the Quadratic Sieve we apply these results withM � ?
n andwe assume that the zi

are uniformly distributed in t1, . . . ,Mu. This yields a heuristic running time of Lp1
2
, 1q.
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Number Field Sieve

The Number Field Sieve (NFS) [16] is a method to obtain the much lower order M �
Lnp23 q. It is the fastest integer factorisation algorithm currently known.

The idea is to write n inm-adic representation

n � md � cd�1m
d�1 � � � � � c1m� c0,

withm � tn1{du. Then n � f pmq, where f ptq :� td � cd�1t
d�1 � � � � � c1t� c0 P Zrts, and

we assume that f ptq is irreducible.
Let α P C be a root of f and consider the homomorphism

ϕ : Zrαs Ñ Zn, gpαq ÞÑ gpmq,
which is well-defined, since n | f pmq. In diagram form:

Zrts
evα

||yy
yy

yy
yy evm

!!
BB

BB
BB

BB

Zrαs ϕ
// Zn

Now we look for giptq P Zrts such that
±
gipαq � β2 is a square in Zrαs and± gipmq �

y2 is a square in Z. Then, letting x :� ϕpβq, we have found a congruent square

x2 � ϕpβ2q � ϕ
�¹

gipαq� �¹ gipmq � y2.

A problem we have to deal with is factorisation in Zrαs. One uses the norm map
N : Qpαq Ñ Q, which satisfiesNpZrαsq � Z, in order to obtain “smooth” elements gipαq.

In particular, we choose giptq :� ait� bi with |ai|, |bi| ¤ C . We let

C � Lnp13 q and d � � log n

log log n

�
1{3
,

so thatm � n1{d � Lnp13 q. Then we have Npgipαqq � Cdn1{d � Lnp23q, and this gives rise
to an Lnp13q factoring algorithm (actually, Lnp13 , 1.923q).
DLP algorithms

The idea of the Number Field Sieve has been applied to obtain Lp1
3
q algorithms for the

DLP in various finite fields.

• We can use the Number Field Sieve for the DLP in a prime field Fp [12].

The idea is to write p � md � cd�1m
d�1 � � � � � c1m � c0 � f pmq. Again, let

α P C be a root of f and consider the homomorphism ϕ : Zrαs Ñ Zp. We look for
giptq :� ait� bi such that both aiα� bi and aim� bi are “smooth”.

• Function Field Sieve (FFS) [2, 3] for the DLP in Fpn , where p is small.

The FFS is the analog of the NFS, with the ring Z replaced by Fprxs.
Let Fpn � Fprxs{pP pxqq, and write P pxq � mpxqd � cd�1pxqmpxqd�1 � � � � �
c1pxqmpxq � c0 � f pmpxqq, where f ptq � f px, tq � °

cipxqti is a bivariate
polynomial, which defines an algebraic curve C and its function field FppCq �
Quot

�
Fprx, ts{pf px, tqq� (if f is irreducible).
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3 Recent developments of the Function Field Sieve

There have been dramatic developments of the FFS, which led cryptologists to say that
the DLP in small characteristic is dead. These advancements are based on an improved
and simplified version of the FFS. We start with a recap, comparing the relation genera-
tion for the basic and the advanced versions of the index calculus method.

• Basic version of the ICM:

LetG � Z�p � xαy, n � p� 1, let S :� tp prime, p ¤ Bu, assume α P S.
Choose k P t1, . . . , nu uniformly at random and look for αk mod p to be B-smooth.

– l.h.s. = αk : trivially B-smooth by construction,

– r.h.s. = αk mod p : uniformly distributed in t1, . . . , p � 1u, is B-smooth with
probability � u�u, where u � log p{ logB, by Theorem 2.3.

Similarly, for groups G � F�pn of finite fields of small characteristic.

• Advanced versions (NFS, FFS) of the ICM:

Use a “construction” of elements of l.h.s. and r.h.s., so that both sides have to be
smooth, but the “size” on either side is much smaller and we have a higher smooth-
ness probability.

For theNFS in Zp: Choose f P Zrtsmonic irreducible of degree d such that p � f pmq
for somem � p1{d, let α P C be a root of f , and consider the diagram:

Zrts
evα

����
��

��
�

evm

��
==

==
==

==

Zrαs
ϕ

��
@@

@@
@@

@
÷

Z

π
����

��
��

��

Zp

at�bA

����
��

��
� ~

��
>>

>>
>>

>

aα�b am�b
Here, ϕpgpαqq � gpmq mod p for g P Zrts, which is well-defined since p | f pmq.
For relation generation, choose a, b P Z small and consider the images of at � b. If
aα � b � ±

γi and am � b � ±
ci, where the ϕpγiq and ci mod p are factor base

elements, then a relation
±
ϕpγiq � ϕpaα � bq � am� b �± ci mod p is found.

For the FFS in Fpnrxs � Fprxs{pP pxqq: Replace Z by the polynomial ring Fprxs, and
Zrαs � Zrts{pf pxqq by Fprx, ts{I , where I � pf px, tqq, so that:

Fprx, ts
}}{{

{{
{{

{{ evmpxq
  

AA
AA

AA
AA

Fprx, ts{I
!!C

CC
CC

CC
C

÷
Fprxs

~~}}
}}

}}
}}

Fpn
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Then QuotpFprx, ts{Iq � FppCq is the function field of the curve C defined by f , and
QuotpFprxsq � Fppxq is the rational function field. A full description and imple-
mentation of the original Function Field Sieve is rather involved and technical.

The Joux-Lercier FFS

This is a simplified, more efficient and wider applicable version [15] of the Function Field
Sieve. Let g1ptq and g2pxq be polynomials and consider the following “symmetrised”
version of the previous diagram:

Fprx, ts
x ÞÑg1ptq

����
��

��
� tÞÑg2pxq

��
??

??
??

?

Fprts
ϕ

��
>>

>>
>>

>
÷

Fprxs
ψ

����
��

��
�

Fpn

For commutativity, the homomorphisms ϕ and ψ have to satisfy ϕptq � ψpg2pxqq �
g2pψpxqq and ψpxq � ϕpg1ptqq � g1pϕptqq. Letting τ :� ϕptq and ξ :� ψpxq this means

τ � g2pξq and ξ � g1pτq.
Now, if we define Fpn as Fprxs{pP pxqq, whereP pxq | g1pg2pxqq�x, this workswith ξ :� rxs
and τ :� g2pξq, since g1pτq � g1pg2pξqq � ξ.

The diagram for relation generation is

xt� at� bx� c,

vvllllllll �
))SSSSSSSSS

g1ptqt� at� bg1ptq � c xg2pxq � ag2pxq � bx� c ,

which yields the equation g1pτqτ � aτ � bg1pτq � c � ξg2pξq � ag2pξq � bξ � c in Fpn , for
a, b, c P Fp. If the polynomials on both sides are smooth a relation has been found.

The running time analysis of FFS algorithms is based on the following polynomial
analog of Theorem 2.3.

Theorem 3.1 (Odlyzko, Lovorn [17]). The probability for a polynomial in Fprxs of degreem to
be b-smooth (all prime factors have degree ¤ b) is

u�p1�op1qqu where u � m

b
.

Now, since P pxq | g1pg2pxqq � x we must have n � degP pxq ¤ deg g1 deg g2, and thus a
natural requirement for g1, g2 is to choose deg g1 � deg g2 � ?

n. Observe that the degrees
of the polynomials on both sides is then about

?
n, which is much smaller than n. The

resulting running time is Lp1
3
, 1.526q.

We remark that the base field Fp can be replaced by any finite field Fq � Fpm , which
gives an algorithm for the DLP in Fqn � Fpmn . In 2012 the Joux-Lercier algorithm was
applied for a record DLP computation in the finite field F36�97 of size 923 bits [13].
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An extremely efficient variation

There are choices of g1, g2 in the Joux-Lercier algorithm that turn out to be much more
efficient than the ones of balanced degree. This is independent recent work by Göloğlu,
Granger, McGuire, Zumbrägel [9], and by Joux [14]. The new algorithms attack DLPs in
finite fields of the form Fqkn , where q � pℓ, so that the extension degree ℓkn is composite.
Since any finite field Fpm of small characteristic can be embedded into such a field, these
methods do actually affect the DLP in all finite fields of small characteristic.

Higher splitting probabilities. Consider a field of the form Fqkn , where k ¥ 2, and let

g2pxq :� xq,

so that the r.h.s. polynomial is of the form

fa,b,cpxq :� xq�1 � axq � bx� c .

The key observation is that polynomials of this form enjoy a much higher probability of
splitting completely into linear factors. Indeed, letting

Z :� tpa, b, cq P F3

qk
| fa,b,cpxq splits completelyu,

then one can show that |Z| � q3k�3 and the set Z can be effectively parametrised.

Idea of proof. Start with the equationXq �X �±νPFq
pX � νq and deduce the identity

XqY �XY q � Y
¹
νPFq

pX � νY q.
If we substituteX by αx� β and Y by γx� δ, where α, β, γ, δ P Fqk , we obtain

XqY �XY q � pαx� βqqpγx� δq � pαx� βqpγx� δqq� pαqxq � βqqpγx� δq � pαx� βqpγqxq � δqq� pαqγ�αγqqxq�1 � pαqδ�βγqqxq � pβqγ�αδqqx� pβqδ�βδqq
and hence (up to a scalar factor) a polynomial of the form fa,b,c. On the other hand, since

Y
¹
νPFq

pX � νY q � pγx� δq ¹
νPFq

�pα� νγqx� pβ � νδq�
this polynomial splits completely into linear factors, and for k ¥ 2 this method produces
many distinct splitting polynomials.

Nowwemay choose deg g1 very small, so that the l.h.s. polynomial g1ptqt�at�bg1ptq�c
splits also with high probability. With the appropriate parameter choices this yields a
polynomial time Lp0q algorithm for Phases 1 and 2 of the Index Calculus Method. This
means that the first parts of the ICM have become very easy, and the focus lies now on
Phase 3, i.e., building up the descent tree, which has previously been the easiest step.
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Further progress and final remarks

• Barbulescu, Gaudry, Joux, Thomé have found a way [5] to make also Phase 3 effi-
cient by a new Descent Method:

There is a polynomial time algorithm to express elements Qpxq P Fqkrxs of degree
2d, modulo P pxq, as product of degree d elements – for all d. The idea is to apply
for each Qpxq an Index Calculus Method (now replace X by αQpxq � β and Y by
γQpxq � δ), which runs as before in polynomial time.

This results in an overall quasi-polynomial time Lpop1qq algorithm for the DLP in
small characteristic finite fields, which is a breakthrough result and a big leap from
the previous Lp1

3
q algorithms. However, the new algorithm is not (yet) practical.

• The new methods have been applied to obtain much larger DLP records, the latest
one in the finite field F218�513 of size 9234 bits [11]. Some facts:

– The finite field was defined as

F29234 � F218�513 � F218rxs{px513 � cq,
for c P F�

218
a primitive element. Thus F29234 is a Kummer extension, which exists

since 513 | 218 � 1.

– The factor base was S :� tp P F218rxs irreducible,deg p ¤ 2u, of size � 235.

– Using a factor base preserving automorphism group of size 1026, the number of
variables was reduced, and 256 systems in 217 variables each to be solved.

– The descent was done in several stages, but without using the quasi-
polynomial descent method of [5]. Instead, we used a Gröbner basis method
(solving bilinear quadratic systems) due to Joux [14], which is a very efficient
method in practice for descending small degree elements.

– The running time was about 250 000 core hours for the linear algebra phase
and about 150 000 core hours for building up the descent tree.

• The DLP in finite fields of small characteristic (usually 2 or 3) is of great impor-
tance in the context of pairing-based cryptography. Hence the natural question arises
whether the new algorithmic progress weakens or indeed breaks any of the param-
eters proposed in the literature. The difficulty of the following DLPs in Fqk , arising
from genus 1 or 2 supersingular curves over Fq, was previously believed to be at
the industry-standard 128-bit security level:

char. genus 1 genus 2

p � 2 k � 4 qk � 24�1223 k � 12 qk � 212�367
p � 3 k � 6 qk � 36�509

– Adj, Menezes, Oliveria, Rodrı́guez-Henrı́quez [4] showed that the DLP in Fqk

∗ for qk � 36�509 is in 274 operations computable.

– Granger, Kleinjung, Zumbrägel [10] showed that the DLP in Fqk

∗ for qk � 24�1223 is in 259 operations computable,

∗ for qk � 212�369 is in 248 operations practically broken.

Thus small characteristic pairings should now be considered completely insecure.

10



References

[1] L. M. Adleman, “A subexponential algorithm for the discrete logarithm problem with appli-
cations to cryptography,” Proc. Foundations of Computer Science, pp. 55–60, IEEE (1979)

[2] L. M. Adleman, “The function field sieve,” in: Algorithmic Number Theory—ANTS-I 1994,
LNCS 877, pp. 108–121, Springer (1994)

[3] L. M. Adleman,M.-D. A. Huang, “Function Field SieveMethod for Discrete Logarithms over
Finite Fields,” Information and Computation 151, pp. 5–16 (1999)

[4] G. Adj, A. Menezes, T. Oliveira and F. Rodrı́guez-Henrı́quez, “Weakness of F36�509 for dis-
crete logarithm cryptography,” in: Pairing-based Cryptography—Pairing 2013, LNCS 8365,
pp. 20–44, Springer (2013), http://eprint.iacr.org/2013/446

[5] R. Barbulescu, P. Gaudry, A. Joux, E. Thomé, “A heuristic quasi-polynomial algorithm for
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